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Let K be a commutative ring with identity.A K -algebra A is said to be zero product
determined if for every K -bilinear ϕ having the property that ϕ(a1, a2) = 0
whenever a1a2 = 0, there is a K -linear ϕ̃ : A2 −→ Im ϕ such that ϕ(a1, a2) =
ϕ̃(a1a2) for all a1, a2 ∈ A. We provide a necessary and sufficient condition for an
algebra A to be zero product determined and use the condition to derive several
new results. Among these, we show that the direct sum of algebras is zero product
determined if and only if each component algebra is zero product determined; we
show that the tensor product of zero product determined algebras is zero product
determined in case K is a field or in case the algebra multiplications are surjective;
we produce conditions under which the homomorphic images of a zero product
determined algebra are zero product determined; finally, we introduce a class of
zero product determined matrix algebras that generalizes block upper triangular
matrices and extends a result of Brešar, Grašič, and Ortega in 2009.

Keywords: zero product determined; algebra homomorphism; tensor product;
ladder matrix

AMS Subject Classifications: 47B49 (16S50, 15A04, 16W10)

1. Introduction

Let K be a commutative ring with identity 1. Given a K -algebra A and a K -bilinear map
ϕ : A × A −→ B, we may ask whether or not ϕ may be written as the composition of
multiplication in A with a K -linear map ϕ̃: that is, whether or not

ϕ(a1, a2) = ϕ̃(a1a2), ∀a1, a2 ∈ A

for some ϕ̃ : A2 −→ B. (Here and throughout, A2 denotes the K -linear span of the products
of members of A).

In order to study the above problem, Brešar, Grašič, and Sánchez Ortega introduced
the notion of a zero product determined algebra in [1]. A K -algebra A (not necessarily
associative) is called zero product determined if each K -bilinear map ϕ : A × A −→ B
satisfying

ϕ(a1, a2) = 0 whenever a1a2 = 0

can be written as ϕ(a1, a2) = ϕ̃(a1a2) for some ϕ̃ : A2 −→ B. Their definition was
motivated by applications to the study of zero product preserving linear maps defined on
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Banach algebras and on matrix algebras under the standard matrix product, the Lie product
and the Jordan product.[1–5] To illustrate, let A, B be K -algebras, and let f : A −→ B be
K -linear. f is said to be zero product preserving if f (a1) f (a2) = 0 whenever a1a2 = 0.
One would like to find conditions on f or on A that imply that f is a homomorphism
of K -algebras, or is at least close to an algebra homomorphism in some sense. We define
a mapping ϕ(a1, a2) = f (a1) f (a2). Then ϕ is K -bilinear and satisfies ϕ(a1, a2) = 0
whenever a1a2 = 0. If A is known to be zero product determined, then there is a unique
K -linear ϕ̃ : A2 −→ B satisfying

ϕ̃(a1a2) = ϕ(a1, a2) = f (a1) f (a2), ∀a1, a2 ∈ A.

If we further assume that 1A ∈ A, then

ϕ̃(a) = ϕ̃(1Aa) = ϕ(1A, a) = f (1A) f (a), ∀a ∈ A,

and by combining the above equations, we arrive at

f (a1) f (a2) = f (1A) f (a1a2), ∀a1, a2 ∈ A.

As a corollary, if A is zero product determined, and if 1A ∈ A and 1B ∈ B are identities,
then any zero product preserving linear map f : A −→ B that satisfies f (1A) = 1B is an
algebra homomorphism.

The initial work of Brešar, Grašič, and Sánchez Ortega and subsequent work by Ge,
Grašič, Li, and Wang have provided examples of zero product determined algebras and
algebras that are not zero product determined.[5,6] Recent similar work includes Brešar’s
and Šmerl’s study of commutativity preserving linear maps [7] and Chen’s, Wang’s, and
Yu’s study of idempotent preserving bilinear maps and the notion of an idempotent elements
determined algebra.[8]

In this paper, we provide several main results that compliment the existing body of
research. We reformulate the definition of a zero product determined algebra in terms
of tensor products and obtain a necessary and sufficient condition for an algebra to be
zero product determined (Theorem 2.3). This reformulation allows us to prove that the
direct sum of algebras

⊕
i∈I Ai for any index set I is zero product determined if and only

if each component algebras Ai is zero product determined (Theorem 3.1), and that the
tensor product of zero product determined algebras is zero product determined when K is
a field or the algebra multiplications are surjective (Theorem 4.3). We go on to examine
homomorphic images of zero product determined algebras (Theorem 5.2, Corollaries 5.3
and 5.4). Finally, we define a class of matrix algebras that generalize block upper triangular
matrices (Definition 6.1) and provide conditions under which algebras comprised of these
matrices are zero product determined (Theorems 6.6 and 6.7), extending the result of
[1, Theorem 2.1] that the matrix algebra Mn(A) for a unital K -algebra A and n ≥ 2 is
zero product determined.

2. Algebras in terms of tensor products

Definition 2.1 A K -algebra is a pair (A, μ) where A is a K -(bi)module and μ : A ⊗K

A −→ A is a K -linear map (i.e. a K -module homomorphism).
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This definition encompasses associative algebras, alternative algebras (an example being
the octonions), Leibniz algebras, Lie algebras, and Jordan algebras, among others. The
algebra multiplication is encoded by the map μ if we define a1a2 = μ(a1 ⊗ a2). In this
context, A2 (the K -linear span of products of members of A) is seen to coincide with Im μ.
We will suppress references to the scalar ring K when there is no danger of ambiguity.

Definition 2.2 The algebra (A, μ) is called zero product determined if each K -linear map
ϕ : A ⊗ A −→ B satisfying

ϕ(a1 ⊗ a2) = 0 whenever μ(a1 ⊗ a2) = 0

factors through μ as ϕ = ϕ̃ ◦ μ for some K -linear map ϕ̃ : A2 −→ B.

This definition is in agreement with that given in [1]. We next define

Tμ = {a1 ⊗ a2 ∈ A ⊗ A| μ(a1 ⊗ a2) = 0} .

In other words, Tμ consists of elementary tensors in Ker μ. We use 〈Tμ〉 to denote the
submodule of A generated by Tμ.

Our first main result, stated below, provides a necessary and sufficient condition for an
algebra (A, μ) to be zero product determined. We will return to this result throughout the
sequel.

Theorem 2.3 (A, μ) is zero product determined if and only if

〈Tμ〉 = Ker μ.

Proof Let ϕ : A⊗ A −→ B be an arbitrary liner map satisfying ϕ(a1 ⊗a2) = 0 whenever
μ(a1 ⊗ a2) = 0. Equivalently, a1 ⊗ a2 ∈ Tμ implies a1 ⊗ a2 ∈ Ker ϕ, so 〈Tμ〉 ⊆ Ker ϕ.

Now, if 〈Tμ〉 = Ker μ, the above inclusion becomes Ker μ ⊆ Ker ϕ, so ϕ factors
through μ. Therefore, (A, μ) is zero product determined.

On the other hand, suppose 〈Tμ〉 � Ker μ. Let P : A ⊗ A −→ A ⊗ A/〈Tμ〉 be the
canonical projection P : x �−→ x + 〈Tμ〉. P satisfies the requirement that P(a1 ⊗ a2) = 0
whenever μ(a1 ⊗ a2) = 0, but since Ker μ � Ker P = 〈Tμ〉, P does not factor through μ,
so (A, μ) is not zero product determined. �

The theorem establishes that an algebra A is zero product determined if and only if the
kernel of its multiplication map is generated by elementary tensors. We illustrate the use of
the theorem by providing two new negative examples.

Proposition 2.4 Let V be a vector space with dim V ≥ 2 over a field K . Then the tensor
algebra T (V ) and the symmetric algebra S(V ) are not zero product determined.
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Proof Recall that the tensor algebra T (V ) over a vector space V may be thought of as
the free unital associative K -algebra on dim V generators. Likewise, the symmetric algebra
S(V ) over V may be thought of as the free commutative unital associative K -algebra on
dim V generators. We will denote multiplication in either algebra by juxtaposition to avoid
confusion with the member of T (V ) ⊗ T (V ) or S(V ) ⊗ S(V ).

The tensor and symmetric algebras over a vector space are integral domains, and as
such, we have that μ(t1 ⊗ t2) = 0 if and only if t1 = 0 or t2 = 0, in either case giving
t1 ⊗ t2 = 0. In short, this means Tμ = 0. To show that these algebras are not zero product
determined, we must now show that Ker μ = 0.

Since dim V ≥ 2, we may select two linearly independent vectors v1, v2 ∈ V . Then for
the tensor algebra T (V ), consider the element

v1v2 ⊗ v1 − v1 ⊗ v2v1 ∈ T (V ) ⊗ T (V ).

We have that

μ(v1v2 ⊗ v1 − v1 ⊗ v2v1) = (v1v2)v1 − v1(v2v1) = 0

so that v1v2 ⊗ v1 − v1 ⊗ v2v1 ∈ Ker μ, while also v1v2 ⊗ v1 − v1 ⊗ v2v1 = 0 by the linear
independence of each of v1, v2, v1v2, and v2v1.

As for the symmetric algebra S(V ), we note that

v1 ⊗ v2 − v2 ⊗ v1 ∈ S(V ) ⊗ S(V )

is non-zero by linear independence yet contained in Ker μ by commutativity. �

3. Direct sums of algebras

We will now use Theorem 2.3 to study the relationship between zero product determined
algebras and direct sums of algebras. Given algebras (A, μ) and (B, λ), we may endow
their module direct sum A ⊕ B with an algebra structure. Define

ν : (A ⊕ B) ⊗ (A ⊕ B) −→ A ⊕ B

by
ν((a1, b1) ⊗ (a2, b2)) = (μ(a1 ⊗ a2), λ(b1 ⊗ b2)).

ν is seen to be well defined after noting that the function

((a1, b1), (a2, b2)) �−→ (μ(a1 ⊗ a2), λ(b1 ⊗ b2))

is bilinear. In this way, (A ⊕ B, ν) is an algebra. This agrees with the usual meaning of the
direct sum of two algebras using component-wise multiplication.

The above example illustrates how the direct sum of algebras can be constructed
completely in terms of linear maps on tensor products. In the case that the index set I
is arbitrary, an arrow-theoretic argument (à la [9]) can be used to define component-wise
multiplication

ν :
(⊕

i

Ai

)
⊗
(⊕

i

Ai

)
−→

⊕
i

Ai .
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Theorem 3.1 Let (Ai , μi ) be K -algebras for i ∈ I and let (A, ν) be their algebra
direct sum. Then, (A, ν) is zero product determined if and only if (Ai , μi ) is zero product
determined for all i ∈ I .

Proof We first note that (
⊕

i Ai ) ⊗ (
⊕

i Ai ) ∼= ⊕
i, j Ai ⊗ A j by the correspondence

σ : (ai )i ⊗ (bi )i �−→ (ai ⊗ b j )i, j ,

seen after making two applications of Proposition 2.1 in Chapter XVI of [10]. Then, ν

factors through σ as ν = ν̃ ◦ σ , where ν̃ = ⊕
i, j δi, jμi (δ is the Kronecker delta). Because

multiplication is defined component-wise, we have (after abusing the order of summands)

σ (Ker ν) = Ker ν̃ =
⊕

i

Ker μi ⊕
⊕
i = j

Ai ⊗ A j . (�)

Similarly, we have

Tν = { (ai )i ⊗ (bi )i | μi (ai ⊗ bi ) = 0 for all i}
σ (〈Tν〉) = 〈σ ((ai )i ⊗ (bi )i ) |μi (ai ⊗ bi ) = 0 for all i〉

=
〈∑

i, j

ai ⊗ b j

∣∣∣∣∣∣μi (ai ⊗ bi ) = 0 for all i

〉

=
⊕

i

〈Tμi 〉 ⊕
⊕
i = j

Ai ⊗ A j . (�)

Comparing (�) and (�), we see that Ker ν = 〈Tν〉 if and only if Ker μi = 〈Tμi 〉 for each i .
Applying Theorem 2.3 completes the proof. �

4. Tensor products of algebras

As with direct sums, the K -module tensor product of two algebras may be endowed with a
natural algebra structure. If the component algebras are zero product determined, then–under
certain additional conditions–so is the tensor product. Theorem 2.3 elaborates.

We need the following two elementary results on tensor products of K -modules.

Proposition 4.1 Let K be a field. Let f : A −→ C and g : B −→ D be linear maps.
Then

Ker ( f ⊗ g) = (Ker f ) ⊗ B + A ⊗ (Ker g) .

Proof We have the K -vector space isomorphisms

(A ⊗ B)/{(Ker f ) ⊗ B + A ⊗ (Ker g)}
� (A/ Ker f ) ⊗ (B/ Ker g)

� Im( f ) ⊗ Im(g) = Im( f ⊗ g)

� (A ⊗ B)/ Ker( f ⊗ g).

This proves Proposition 4.1. �
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Proposition 4.2 Let A, B, C, and D be K -modules and let f : A −→ C and g : B −→
D be surjective K -linear maps. Then

Ker ( f ⊗ g) = (Ker f ) ⊗ B + A ⊗ (Ker g) .

Proof We have

(A ⊗ B)/{(Ker f ) ⊗ B + A ⊗ (Ker g)}
� (A/ Ker f ) ⊗ (B/ Ker g)

� C ⊗ D � (A ⊗ B)/ Ker( f ⊗ g).

This proves Proposition 4.2. �

In Proposition 4.2, if f or g is not surjective, the equality of Ker( f ⊗ g) may not hold.
We provide the following example.

Example Let Zm := Z/mZ = {0, 1, . . . , m − 1}. Consider the Z-linear maps f : Z2 −→
Z2, f (1) = 1, and g : Z2 −→ Z4, g(1) = 2. Then f ⊗ g sends Z2 ⊗ Z2 to Z2 ⊗ Z4, and
( f ⊗ g)(1 ⊗ 1) = 1 ⊗ 2 = 2 ⊗ 1 = 0 in Z2 ⊗ Z4. We have Ker( f ⊗ g) = Z2 ⊗ Z2.
However, Ker f = {0} and Ker g = {0}. So

Ker ( f ⊗ g) � (Ker f ) ⊗ B + A ⊗ (Ker g) .

We now switch our attention from tensor product of general K -modules to tensor product
of K -algebras. Given K -algebras (A, μ) and (B, λ), their K -module tensor product A ⊗ B
may be endowed with a component-wise multiplication map κ : A⊗ B ⊗ A⊗ B −→ A⊗ B
given by

κ(a1 ⊗ b1 ⊗ a2 ⊗ b2) = μ(a1 ⊗ a2) ⊗ λ(b1 ⊗ b2).

(A ⊗ B, κ) is then a K -algebra and is called the algebra tensor product of the K -algebras
A and B.

Theorem 4.3 Let (A, μ) and (B, λ) be zero product determined K -algebras satisfying
the added condition that

Ker (μ ⊗ λ) = (Ker μ) ⊗ (B ⊗ B) + (A ⊗ A) ⊗ (Ker λ) .

Then, their algebra tensor product (A ⊗ B, κ) is zero product determined. In particular,
(A ⊗ B, κ) is zero product determined when:

(1) K is a field, or
(2) Im μ = A and Im λ = B.

Proof Let σ be the obvious isomorphism

σ : A ⊗ B ⊗ A ⊗ B −→ A ⊗ A ⊗ B ⊗ B.
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Then, κ factors through σ as κ = (μ ⊗ λ) ◦ σ .

The equality

Ker (μ ⊗ λ) = (Ker μ) ⊗ (B ⊗ B) + (A ⊗ A) ⊗ (Ker λ)

immediately shows that Ker (μ ⊗ λ) = 〈Tμ⊗λ〉, whose inverse image under σ is

Ker κ = 〈Tκ 〉.
By Theorem 2.3, (A ⊗ B, κ) is zero product determined. Applying Proposition 4.1 or 4.2
where appropriate completes the proof. �

Example It was shown that C[x, y] (the free commutative C-algebra on two generators)
is not zero product determined. In fact, Theorem 4.3 implies that C[x] is not zero product
determined. Assume for the contrary that C[x] is zero product determined. C[x, y] =
C[x] ⊗C C[y], and the theorem would give that C[x, y] is zero product determined–a
contradition.

Theorem 4.3 may be extended to the tensor product of finitely many algebras as follow:

Theorem 4.4 Let (Ai , μi ), i = 1, 2, . . . , n, be zero product determined K -algebras.
Let

(⊗n
i=1 Ai , κ

)
be the algebra tensor product of (Ai , μi ), i = 1, 2, . . . , n. If one of the

following conditions holds:

(1) K is a field, or
(2) Im μi = Ai for i = 1, 2, . . . n,

then
(⊗n

i=1 Ai , κ
)

is zero product determined.

Proof For either case, we use Theorem 4.3 and induction to complete the proof. �

5. Homomorphic images of algebras

We next examine the relationship between homomorphic images of algebras and the property
of being zero product determined. For algebras (A, μ) and (B, λ), an algebra homomor-
phism f : A −→ B is simply a linear map such that the diagram commutes.

We begin with a general lemma.
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Lemma 5.1 Let f : A → B be a K -algebra homomorphism from (A, μ) to (B, λ). Then,

Ker f ∩ Im μ = μ
(
( f ⊗ f )−1 (Ker λ)

)
.

Proof By f ◦ μ = λ ◦ ( f ⊗ f ), we get Ker μ ⊆ ( f ⊗ f )−1(Ker λ). Then

μ

(∑
i

ai1 ⊗ ai2

)
∈ Ker f ∩ Im μ ⇐⇒ f ◦ μ

(∑
i

ai1 ⊗ ai2

)
= 0

⇐⇒ λ ◦ ( f ⊗ f )

(∑
i

ai1 ⊗ ai2

)
= 0

⇐⇒
∑

i

ai1 ⊗ ai2 ∈ ( f ⊗ f )−1 (Ker λ)

⇐⇒ μ

(∑
i

ai1 ⊗ ai2

)
∈ μ

(
( f ⊗ f )−1 (Ker λ)

)
.

�

Theorem 5.2 Let (A, μ) be a zero product determined K -algebra, and f : A → B a
surjective K -algebra homomorphism from (A, μ) to (B, λ). Then, (B, λ) is zero product
determined if and only if

Ker f ∩ Im μ ⊆ μ
(
( f ⊗ f )−1 (〈Tλ〉)

)
.

Remark By Lemma 5.1, the inclusion in the last formula may be replaced by equality and
the statement still holds.

Proof We proceed in two steps:

(1) If (B, λ) is zero product determined, then Ker λ = 〈Tλ〉. Lemma 5.1 immediately
implies that Ker f ∩ Im μ = μ

(
( f ⊗ f )−1 (〈Tλ〉)

)
.

(2) Suppose Ker f ∩ Im μ ⊆ μ
(
( f ⊗ f )−1 (〈Tλ〉)

)
. To prove that (B, λ) is zero

product determined, it suffices to show that Ker λ ⊆ 〈Tλ〉. By Lemma 5.1,

μ
(
( f ⊗ f )−1 (Ker λ)

)
⊆ μ

(
( f ⊗ f )−1 (〈Tλ〉)

)
.

So,

( f ⊗ f )−1 (Ker λ) ⊆ ( f ⊗ f )−1 (〈Tλ〉) + Ker μ. (
)

Since (A, μ) is zero product determined, Ker μ = 〈Tμ〉. Moreover, for any
a′ ⊗ a′′ ∈ Tμ,

0 = f (μ(a′ ⊗ a′′)) = λ( f (a′) ⊗ f (a′′)).

Therefore, f (a′) ⊗ f (a′′) ∈ Tλ. It shows that Tμ ⊆ ( f ⊗ f )−1 (Tλ) and so 〈Tμ〉 ⊆
( f ⊗ f )−1(〈Tλ〉). Then 
 becomes

( f ⊗ f )−1 (Ker λ) ⊆ ( f ⊗ f )−1 (〈Tλ〉) .
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The surjectivity of f implies the surjectivity of f ⊗ f . Therefore, Ker λ ⊆ 〈Tλ〉 as
desired. �

Theorem 5.2 implies the following two corollaries.

Corollary 5.3 Let f : A → B be a surjective K -algebra homomorphism from (A, μ)

to (B, λ). If (A, μ) is zero product determined and satisfies

μ (A ⊗ (Ker f ) + (Ker f ) ⊗ A) = Ker f ∩ Im μ

(for example, if A has unity), then (B, λ) is zero product determined.

Proof Obviously,

A ⊗ (Ker f ) + (Ker f ) ⊗ A ⊆ ( f ⊗ f )−1 (〈Tλ〉) ,

and we apply Theorem 5.2. �

Corollary 5.4 Let (A, μ) be a K -algebra with the property that for each a ∈ A, there
are a′, a′′ ∈ A where μ(a′ ⊗a′′) = a (for example, if A has unity). Then, if A is zero product
determined, so are all of its homomorphic images.

Proof Suppose the hypotheses, and suppose that we are given a K -algebra (B, λ) and a
surjective K -algebra homomorphism f from A onto B. Given a ∈ Ker f , we can write
a = μ(a′ ⊗ a′′) for some a′, a′′ ∈ A. Then,

0 = f (a) = f (μ(a′ ⊗ a′′)) = λ( f (a′) ⊗ f (a′′)).

This is to say that f (a′) ⊗ f (a′′) ∈ 〈Tλ〉. Therefore,

Ker f ⊆ μ
(
( f ⊗ f )−1 (〈Tλ〉)

)
,

and we apply Theorem 5.2. �

As a simple example, if I is an ideal of K , then K/I as a K -algebra is zero product
determined.

Example Suppose A is zero product determined and B is not zero product determined.
Then, A⊕ B is not zero product determined by Theorem 3.1. We make note of the following
observations concerning algebra homomorphisms:

(1) Claim: A surjective algebra homomorphism may send a non-zero product deter-
mined algebra to either a zero product determined algebra or a non-zero product
determined algebra. For examples, consider the projection maps PA : A⊕B −→ A
and PB : A ⊕ B −→ B.

(2) Claim: A non-surjective algebra homomorphism may send a zero product deter-
mined algebra to a non-zero product determined algebra. For example, consider
the inclusion map from A to A ⊕ B.
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6. Ladder matrix algebras

Let A be a K -algebra with unity 1A, and Mn(A) the n × n matrices of entries in A. Brešar,
Grašič, and Sánchez Ortega proved the following result in [1]: when n ≥ 2, Mn(A) with
matrix multiplication is zero product determined. We extend this result by investigate the
zero product determined property relative to algebras comprised of matrices that we will
call ladder shape matrices. Let Ei j ∈ Mn(A) denote the matrix with the only non-zero entry
1A in the (i, j) position.

Definition 6.1 Given an ordered set of integer pairs

L := {(i1, j1), (i2, j2), . . . , (ik, jk)},
where k ∈ Z+, 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n, we call L a k step ladder
of size n or simply a ladder. Define the index set of ladder L by

�L := {(i, j) ∈ {1, 2, . . . , n}2 | i ≤ it and jt ≤ j for some (it , jt ) ∈ L}.
Define the set of L ladder matrices by

ML(A) :=
∑

(i, j)∈�L

AEi j .

In brief, ML(A) contains the matrices in Mn(A) with every non-zero entry locating on
the upper right direction of certain (it , jt ).

In the following discussion, we assume that L and L′ are two ladders of size n as follow:

L = {(i1, j1), (i2, j2), . . . , (ik, jk)},
L′ = {(i ′1, j ′1), (i ′2, j ′2), . . . , (i ′k′ , j ′k′)}.

Theorem 6.2 The product of ladder matrices satisfies that

ML(A)ML′(A) = ML′′(A),

where
L′′ = {

(it , j ′s) | t = max{u | ju ≤ i ′s}, s = min{v | jt ≤ i ′v}
}
.

In particular, L′′ is a ladder with step k′′ ≤ min{k, k′}, and every pair (it , j ′s) ∈ L′′ satisfies
jt ≤ i ′s .

To prove the above theorem, we need the following results about L′′.

Lemma 6.3 Let L and L′ be given above.

(1) (Algorithm) for any s′ ∈ {1, 2, . . . , k′}, let

t := max{u | ju ≤ i ′s′ }, s := min{v | jt ≤ i ′v}.
Then, (it , j ′s) is an element of the set L′′ defined in Theorem 6.2. In other words,
t = max{u | ju ≤ i ′s}.

(2) Any element of the set L′′ may be obtained by Algorithm (1).
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(3) If (it1 , j ′s1
) and (it2 , j ′s2

) are distinct elements of the set L′′, and t1 ≤ t2, then t1 < t2
and s1 < s2.

(4) For (t, s) ∈ {1, 2, . . . , k} × {1, 2, . . . , k′}, (it , j ′s) ∈ �L′′ if and only if jt ≤ i ′s .

Proof We prove the claims in order:

(1) The definition of t says that

jt ≤ i ′s′ < jt+1 (or n + 1 if t = k).

The definition of s says that

i ′s−1 (or 0 if s = 1) < jt ≤ i ′s .

Hence, s ≤ s′ and thus,

jt ≤ i ′s ≤ i ′s′ < jt+1 (or n + 1 if t = k).

It proves that t = max{u | ju ≤ i ′s}.
(2) If (it , j ′s) ∈ L′′, then by definition

t = max{u | ju ≤ i ′s}, s = min{v | jt ≤ i ′v}.
Starting at s and applying Algorithm (1), we get the pair (it , j ′s).

(3) Suppose (it1 , j ′s1
) and (it2 , j ′s2

) are distinct elements of L′′, and t1 ≤ t2. If t1 = t2,
then s1 = s2 by the definition of L′′. A contradiction! So t1 < t2. Then, jt1 < jt2 .
Since

s1 = min{v | jt1 ≤ i ′v} and s2 = min{v | jt2 ≤ i ′v},
we have s1 ≤ s2. Then s1 < s2 by a similar reasoning.

(4) Suppose (t, s) ∈ {1, 2, . . . , k} × {1, 2, . . . , k′} satisfies that jt ≤ i ′s . We construct
(it1 , j ′s1

) ∈ L′′ by Algorithm (1) as follow:

t1 := max{u | ju ≤ i ′s}, s1 := min{v | jt1 ≤ i ′v}.
Then jt ≤ jt1 ≤ i ′s , so that jt1 ≤ i ′s1

≤ i ′s . Therefore, it ≤ it1 and j ′s1
≤ j ′s . This

shows that (it , j ′s) ∈ �L′′ .
Conversely, suppose (it , j ′s) ∈ �L′′ . There exists (it1 , j ′s1

) ∈ L′′, such that

it ≤ it1, j ′s1
≤ j ′s .

Hence, t ≤ t1 and s1 ≤ s. Algorithm (1) shows that jt1 ≤ i ′s1
. Therefore, jt ≤ jt1 ≤

i ′s1
≤ i ′s . �

Proof of Theorem 6.2 Let (i, j ′) ∈ �L′′ . Then i ≤ it and j ′s ≤ j ′ for certain (it , j ′s) ∈ L′′.
By the definition ofL′′, we have jt ≤ i ′s . By the definition of�L and�L′ , we get (i, jt ) ∈ �L
and ( jt , j ′) ∈ �L′ . Therefore, Ei jt ∈ ML(A), E jt , j ′ ∈ ML′(A) and Ei j ′ = Ei jt E jt j ′ ∈
ML(A)ML′(A). This shows that ML′′(A) ⊆ ML(A)ML′(A).

Now suppose X = (
xi j
)

n×n is a matrix in ML(A)ML′(A), that is,

X =
m∑

r=1

Yr Zr , Yr ∈ ML(A), Zr ∈ ML′(A), r = 1, 2, . . . , m.
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If x pq = 0 for certain (p, q), then the (p, q) entry of certain Yr Zr is non-zero. Set Yr =(
yi j
)

n×n , Zr = (
zi j
)

n×n . The (p, q) entry of Yr Zr is
∑n

i=1 ypi ziq . There exists i such that
ypi = 0 and ziq = 0. Then (p, i) ∈ �L and (i, q) ∈ �L′ . There are (it , jt ) ∈ L and
(i ′s, j ′s) ∈ L′, such that

p ≤ it , jt ≤ i, i ≤ i ′s, j ′s ≤ q.

So jt ≤ i ′s . Thus, (it , j ′s) ∈ �L′′ according to Lemma 6.3(4). Then (p, q) ∈ �L′′ by p ≤ it

and j ′s ≤ q . Therefore, ML(A)ML′(A) ⊆ ML′′(A).
Overall, we have proved that ML(A)ML′(A) = ML′′(A). �

Definition 6.4 A ladder L = {(i1, j1), (i2, j2), . . . , (ik, jk)} is called a block upper
triangular ladder, if it < jt+1 for t = 1, 2, . . . , k − 1 (Figure 1).

Figure 1. A block upper triangular ladder matrix.

For example, the set of block upper triangular matrices of Mn(A) with respect to a
partition n1, n2, . . . , nk of n coincides with ML(A) for

L = {(n1, 1), (n1 + n2, n1 + 1), (n1 + n2 + n3, n1 + n2 + 1), . . .}.
Such an L is a block upper triangular ladder.

Theorem 6.5 ML(A) with matrix product forms a K -algebra if and only if L is a block
upper triangular ladder.

Proof Let L = {(i1, j1), (i2, j2), . . . , (ik, jk)} and ML(A)ML(A) = ML′′(A). Then
ML(A) is a K -algebra if and only if ML′′(A) ⊆ ML(A).

Suppose L is block upper triangular so that it < jt+1 for t = 1, 2, . . . , k − 1. We prove
that L′′ ⊆ �L, so that ML′′(A) ⊆ ML(A). Given (it , js) ∈ L′′, we have jt ≤ is . Since L
is block upper triangular, is < js+1. Hence, t ≤ s and jt ≤ js . By (it , jt ) ∈ L, we have
(it , js) ∈ �L. Therefore, L′′ ⊆ �L.
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Now suppose L is not block upper triangular so that jt+1 ≤ it for certain t ∈ {1, 2, . . . ,

k − 1}. Then (it+1, jt ) ∈ �L′′ by Lemma 6.3(4). However, jt < jt+1, and we see that
(it+1, jt ) ∈ �L. Therefore, ML′′(A) � ML(A). �

Theorem 6.6 Let (A, μ) be a K -algebra with unity 1A. Let L = {(i1, j1), (i2, j2), . . . ,
(ik, jk)} be a block upper triangular ladder of size n. Then, ML(A) with induced matrix
product μ̂ is a zero product determined K -algebra, provided that one of the following
conditions holds:

(1) (A, μ) is zero product determined.
(2) {i1, i2, . . . , ik} and { j1, j2, . . . , jk} have no intersection.

Proof For convenience, we use the product operation on A to denote μ , and the matrix
product operation on ML(A) to denote μ̂.

Let ML(A)ML(A) = ML′′(A). To prove that (ML(A), μ̂) is zero product determined,
it suffices to prove that Ker μ̂ ⊆ 〈Tμ̂〉.

Given
∑m

r=1 M (r) ⊗ N (r) ∈ Ker μ̂, suppose

M (r) =
∑

(i, j)∈�L

m(r)
i j Ei j , N (r) =

∑
(i, j)∈�L

n(r)
i j Ei j .

Then,

μ̂

(
m∑

r=1

M (r) ⊗ N (r)

)
=

m∑
r=1

M (r)N (r) = 0.

For any (p, q) ∈ �L′′ ,

m∑
r=1

∑
�

(p,�),(�,q)∈�L

m(r)
p� n(r)

�q = 0. (6.1)

So
m∑

r=1

∑
�

(p,�),(�,q)∈�L

m(r)
p� ⊗ n(r)

�q ∈ Ker μ. (6.2)

Explicit computation shows that

m∑
r=1

M (r) ⊗ N (r) =
m∑

r=1

⎛
⎝ ∑

(i, j)∈�L

m(r)
i j Ei j

⎞
⎠⊗

⎛
⎝ ∑

(i, j)∈�L

n(r)
i j Ei j

⎞
⎠

=
m∑

r=1

⎛
⎜⎜⎝ ∑

(p,�),(�,q)∈�L

m(r)
p� E p� ⊗ n(r)

�q E�q +
∑

(p,s),(t,q)∈�L
s =t

m(r)
ps E ps ⊗ n(r)

tq Etq

⎞
⎟⎟⎠

∈
∑

(p,q)∈�L′′

⎛
⎜⎜⎝

m∑
r=1

∑
�

(p,�),(�,q)∈�L

m(r)
p� E p� ⊗ n(r)

�q E�q

⎞
⎟⎟⎠+ 〈Tμ̂〉
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For any (p, q) ∈ �L′′ , we can choose a representative �pq such that (p, �pq), (�pq , q) ∈
�L. Then,

m∑
r=1

∑
�

(p,�),(�,q)∈�L

m(r)
p� E p� ⊗ n(r)

�q E�q (6.3)

=
m∑

r=1

∑
�

(p,�),(�,q)∈�L

(
m(r)

p� ⊗ n(r)
�q

) (
E p� ⊗ E�q − E p�pq ⊗ E�pq q

)

+

⎛
⎜⎜⎝

m∑
r=1

∑
�

(p,�),(�,q)∈�L

m(r)
p� ⊗ n(r)

�q

⎞
⎟⎟⎠(E p�pq ⊗ E�pq q

)
.

Each summand of the first term of (6.3) satisfies that

(
m(r)

p� ⊗ n(r)
�q

) (
E p� ⊗ E�q − E p�pq ⊗ E�pq q

)
=
(

m(r)
p� ⊗ n(r)

�q

) [(
E p� − E p�pq

)⊗ (
E�q + E�pq q

)− E p� ⊗ E�pq q + E p�pq ⊗ E�q
]

∈ 〈Tμ̂〉.

Next, we show that the second term of (6.3) also belongs to 〈Tμ̂〉 when one of the conditions
in Theorem 6.6 is satisfied.

(1) (A, μ) is zero product determined. Then, Ker μ = 〈Tμ〉. According to (6.2),

⎛
⎜⎜⎝

m∑
r=1

∑
�

(p,�),(�,q)∈�L

m(r)
p� ⊗ n(r)

�q

⎞
⎟⎟⎠(E p�pq ⊗ E�pq q

)

∈ 〈Tμ〉 (E p�pq ⊗ E�pq q
) ⊆ 〈Tμ̂〉.

(2) {i1, i2, . . . , ik} and { j1, j2, . . . , jk} have no intersection. We use an approach similar
to the proof of [1, Theorem 2.1]. Define

t = min{v | p ≤ iv}, s = max{u | ju ≤ q}.

Let γ be any integer such that (p, γ ), (γ, q) ∈ �L. Then

it−1 (or 0 if t = 1) < p ≤ it =⇒ jt ≤ γ,

js ≤ q < js+1 (or n + 1 if s = k) =⇒ γ ≤ is .

So, jt ≤ γ ≤ is . Conversely, if integer γ satisfies that jt ≤ γ ≤ is , then
(p, γ ), (γ, q) ∈ �L.
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By assumption jt = is . So, jt < is . Let γ = �pq . Let δ be an integer such that
jt ≤ δ ≤ is and γ = δ. Then for any elements a, b ∈ A,

(a ⊗ b)
(
E pγ ⊗ Eγ q

)− (ab ⊗ 1A)
(
E pδ ⊗ Eδq

)
= (

aE pγ + abE pδ

)⊗ (
bEγ q − Eδq

)
−abE pδ ⊗ bEγ q + aE pγ ⊗ Eδq

∈ 〈Tμ̂〉.

Hence,

⎛
⎜⎜⎝

m∑
r=1

∑
�

(p,�),(�,q)∈�L

m(r)
p� ⊗ n(r)

�q

⎞
⎟⎟⎠(E p�pq ⊗ E�pq q

)

∈

⎛
⎜⎜⎝

m∑
r=1

∑
�

(p,�),(�,q)∈�L

m(r)
p� n(r)

�q ⊗ 1A

⎞
⎟⎟⎠(E pδ ⊗ Eδq

)+ 〈Tμ̂〉 = 〈Tμ̂〉

according to (6.1).

In both cases, we succeed in proving that
∑m

r=1 M (r)⊗N (r) ∈ 〈Tμ̂〉. Therefore, Ker μ̂ ⊆
〈Tμ̂〉 as desired. �

For examples, the matrix algebras of block upper triangular matrices, and the matrix
algebra of strictly upper triangular matrices, over a zero product determined K -algebra A
with unity, are zero product determined.

Theorem 6.6 extends the result of [1, Theorem 2.1]. Moreover, Theorem 6.6 is sharp,
according to the following theorem.

Theorem 6.7 Let (A, μ) be any non-zero-product-determined K -algebra with unity 1A.
Let L = {(i1, j1), (i2, j2), . . . , (ik, jk)} be any block upper triangular ladder of size n. If
is = jt for some indices s and t, then ML(A) with induced matrix product μ̂ is not a zero
product determined K -algebra.

Proof We use the product on A to denote μ, and the matrix product on ML(A) to denote
μ̂. Since (A, μ) is not zero product determined, there exists

m∑
r=1

a(r) ⊗ b(r) ∈ Ker μ − 〈Tμ〉.

Suppose ML(A)ML(A) = ML′′(A). Then, (it , js) ∈ L′′ by jt = is and Lemma 6.3(1).
Denote the matrices

M (r) = a(r)Eit , jt , N (r) = b(r)Eis , js = b(r)E jt , js , r = 1, 2, . . . , m.
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Then, M (r), N (r) ∈ ML(A) and
∑m

r=1 M (r)N (r) = 0, which shows that

m∑
r=1

M (r) ⊗ N (r) =
(

m∑
r=1

a(r) ⊗ b(r)

) (
Eit , jt ⊗ E jt , js

) ∈ Ker μ̂.

Now we claim that
∑m

r=1 M (r) ⊗ N (r) ∈ 〈Tμ̂〉. Suppose on the contrary,

m∑
r=1

M (r) ⊗ N (r) =
m′∑

w=1

M ′(w) ⊗ N ′(w)

for some M ′(w) ⊗ N ′(w) ∈ Tμ̂, w = 1, 2, . . . , m′, m′ ∈ Z+. Then, M ′(w)N ′(w) = 0. The
only index γ such that (it , γ ), (γ, js) ∈ �L is γ = jt = is . Let m(w) denote the (it , jt )
entry of M ′(w), and n(w) the ( jt , js) entry of N ′(w). The (it , js) entry of M ′(w)N ′(w) is
exactly m(w)n(w) = 0, which shows that m(w) ⊗ n(w) ∈ Tμ.

View ML(A) as a free A-bimodule with the basis {Ei j | (i, j) ∈ �L}. Then ML(A)⊗A

ML(A) is a free A-bimodule with the basis {Ei j ⊗A E pq | (i, j), (p, q) ∈ �L}. The
K -module monomorphism K → A by k �→ k1A induces a K -module epimorphism

ML(A) ⊗ ML(A) → ML(A) ⊗A ML(A).

Therefore, the elements of {Ei j ⊗ E pq | (i, j), (p, q) ∈ �L} in ML(A) ⊗ ML(A) are
K -linearly independent. The coefficient of Eit , jt ⊗E jt , js in the expression of

∑m′
w=1 M ′(w)⊗

N ′(w) is
m′∑

w=1

m(w) ⊗ n(w) =
m∑

r=1

a(r) ⊗ b(r).

It shows that
∑m

r=1 a(r) ⊗ b(r) ∈ 〈Tμ〉, a contradiction to our assumption.
Overall, we have Ker μ̂ = 〈Tμ̂〉, and thus (ML(A), μ̂) is not zero product

determined. �
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[1] Brešar M, Grašič M, Ortega JS. Zero product determined matrix algebras. Linear Algebra Appl.
2009;430:1486–1498.

[2] Alaminos J, Brešar M, Extremera J, Villena AR. Maps preserving zero products. Stud. Math.
2009;193:131–159.

[3] Chebotar MA, Ke W-F, Lee P-H, Wong N-C. Mappings preserving zero products. Stud. Math.
2003;155:77–94.

[4] Chebotar MA, Ke W-F, Lee P-H, Zhang R. On maps preserving zero Jordan products. Monatsh.
Math. 2009;149:91–101.

[5] Wang D, Yu X, Chen Z. A class of zero product determined Lie algebras. J. Algebra.
2011;331:145–151.



342 D. Brice and H. Huang
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