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The matrix Lie algebra on a one-step ladder is zero product determined
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The class of matrix algebras on a ladder L generalizes the class of block upper triangular
matrix algebras. It was previously shown that the matrix algebra on a ladder L is zero product
determined under matrix multiplication. In this article, we show that the matrix algebra on a
one-step ladder is zero product determined under the Lie bracket.
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Introduction

In Brice and Huang, 2015, the authors defined a class
of matrix algebras, the ladder matrix algebras, that gener-
alizes the class of block upper triangular matrix algebras.
They introduce the notion of an upper triangular k-step ladder
as a method of parameterizing and indexing these algebras.
Certain one-step ladder matrix algebras arise as ideals of
derivation algebras of parabolic subalgebras of reductive Lie
algebras, which provided the motivation for their study (Brice,
2014).

While these terms are made precise in the sequel, the
concepts are perhaps best illustrated with an example. Let
L = {(3, 2), (6, 5)}. L is then a 2-step upper triangular ladder
on 6. The ladder matrix algebra on L is the subalgebra

ML =





0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 0 0 0 ∗ ∗

0 0 0 0 ∗ ∗

0 0 0 0 ∗ ∗




of Mn×n.

An algebra (A, ∗) is zero product determined if each bilin-
ear map ϕ on A × A that preserves zero products necessarily
factors as a linear map f on A2 composed with the algebra
multiplication ∗ so that ϕ(x, y) = f (x ∗ y). The notion is
motivated by the linear preserver problem in operator theory
and has recently become a topic of considerable research
(Brešar, Grašič, and Ortega, 2009).

It was previously shown that the ladder matrix algebras
are zero product determined when ∗ is matrix multiplication
(Brice and Huang, 2015). The purpose of this paper is to
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show that a one-step ladder matrix algebra is zero product
determined when ∗ is the Lie bracket [x, y] = xy − yx.

Previous work on zero product determined algebras has
also considered the case where ∗ is the Jordan product
x ◦ y = xy + yx (Brešar et al., 2009). Extending the present
one-step result on ladder matrix algebras to the Jordan product
case, and to the k-step case for both the Lie bracket and the
Jordan product, remains a topic of interest to the author.

Preliminaries

Let F be a field. Let n be a positive integer. Let Mn×n
F

denote the space of n-by-n matrices with entries in F. Let
ei, j denote the matrix whose entry in the ith row jth column
is 1F , and whose other entries are 0F . We will suppress
further mention of the field F when convenient, but the reader
as advised that all references to linearearity and tensor that
follow refer specifically to F-linearity and tensors over F.

Definition 1. A k-step ladder on n is a set of pairs of positive
integers

L = {(i1, j1), ..., (ik, jk)}

with
1 ≤ i1 < i2 < ... < ik ≤ n

and
1 ≤ j1 < j2 < ... < jk ≤ n.

Each pair (it, jt) is called a step of L.

Definition 2. The ladder matrices on L is the subspace

ML = Span
k⋃

t=1

{
ei, j

∣∣∣1 ≤ i ≤ it and jt ≤ j ≤ n
}

.

Definition 3. A ladderL is called upper triangular if it < jt+1
for t = 1, 2, ..., k − 1.

Theorem 4 (Brice and Huang, 2015). Let L be a ladder on n.
ML is closed under matrix multiplication (and subsequently
under the Lie bracket) if and only if L is upper triangular.
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We remind the reader that if x, y ∈ Mn×n
F , then the Lie

bracket of x and y, denoted [x, y], is the matrix xy − yx. A
subspace of Mn×n

L
closed under [·, ·] is termed a Lie algebra.

In light of Theorem 4, whenever L is upper triangular we
will call ML the matrix algebra on L in case we are consid-
ering ML as an algebra under matrix multiplication or the
matrix Lie algebra on L in case we are considering ML as an
algebra under the Lie bracket.

The following proposition establishes that the class of
block upper triangular matrix algebras is a subclass of the
class of ladder matrix algebras.

Proposition 5. Let q ⊆ Mn×n
F be a block upper triangular ma-

trix algebra (res. Lie algebra). There is an upper triangular
ladder L such that q = ML.

Proof. Block upper triangular matrix algebras (res. Lie al-
gebras) correspond with partitions of n (Knapp, 2002). Let
π = (n1, n2, ..., nk) be the partition of n corresponding to q.
Let

L =


 t∑

i=1

ni, 1 +

t−1∑
i=1

ni


∣∣∣∣∣∣∣1 ≤ t ≤ k


where

∑0
i=1 ni should be understood to be 0. L is upper trian-

gular by construction, and furthermore is constructed so that
q = ML. �

Stated perhaps more clearly, the block upper triangular ma-
trix algebras are precisely the ladder matrix algebras where
jt+1 = it + 1 for t = 1, 2, ..., k − 1.

Definition 6. An algebra over F is a pair (A, µ) where A is
a vector space over F and µ : A ⊗ A→ A is an F-linear map.
The image of µ is denoted by A2.

This definition of algebra does not assume that the multipli-
cation map µ is associative. This definition is chosen because
it is indifferent as to whether we are considering ML as an
associative algebra under µ : x⊗y 7→ xy as a Lie algebra under
µ : x⊗y 7→ [x, y] or as a Jordan algebra under µ : x⊗y 7→ x◦y.

Definition 7. An algebra is called zero product determined if
for each F-linear map ϕ : A⊗ A→ X (where X is an arbitrary
vector space over F) the condition

∀x, y ∈ A, ϕ(x ⊗ y) = 0 whenever µ(x ⊗ y) = 0 (1)

ensures that ϕ factors through µ.

A ⊗ A

µ

��

ϕ

""
A2

f
// X

A linear map satisfying condition 1 is said to preserve zero
products. By ϕ factors through µ it is meant that there is a

linear map f : A2 → X such that ϕ = f ◦ µ, as illustrated
above. If ϕ factors through µ, then condition 1 holds trivially.
We note that in case (A, µ) is zero product determined and
ϕ : A ⊗ A→ X preserves zero products, then the map f such
that ϕ = f ◦ µ is uniquely determined.

The notion of a zero-product determined algebra was in-
troduced by Matej Brešar, Mateja Grašič, and Juana Sánchez
Ortega to further the study of near-homomorphisms on Ba-
nach algebras (Brešar et al., 2009). We present below the
results of interest to us in this paper.

Theorem 8 (Brešar et al., 2009). Mn×n
F considered as an

algebra under either matrix multiplication or the Lie bracket
is zero product determined.

Theorem 9 (Grašič, 2010). The classical Lie algebras are
zero product determined.

Theorem 10 (Wang, Yu, and Chen, 2011). The simple Lie
algebras over C and their parabolic subalgebras are zero
product determined.

Theorem 11 (Brice and Huang, 2015). An abelien Lie alge-
bra is zero product determined.

Theorem 12 (Brice and Huang, 2015). If L is upper trian-
gular, then ML under matrix multiplication is zero product
determined.

Recall that A⊗A = Span{x⊗y|x, y ∈ A}. Members of A⊗A
of the form x ⊗ y with x, y ∈ A are called rank-one tensors.
We will make extensive use of the following theorem.

Theorem 13 (Brice and Huang, 2015). An algebra (A, µ) is
zero product determined if and only if Ker µ is generated by
rank-one tensors.

We note that while A ⊗ A is generated by rank-one tensors
by definition, an arbitrary subspace of A ⊗ A need not be
generated by the rank-one tensors it contains.

Main Result

We state and prove our main result.

Proposition 14. Let L be a 1-step ladder on n. The ladder
matrix Lie algebra ML is zero product determined.

Proof. Let L = {(i1, j1)}. If i1 < j1, then ML is abelien and is
zero product determined by Theorem 11. We assume without
loss of generality that i1 ≥ j1.

Let µ :
∑

t xt ⊗ yt 7→
∑

t[xt, yt]. In light of Theorem 13, our
task is to construct a basis of Ker µ consisting of elements of
ML ⊗ ML of the form x ⊗ y with x, y ∈ ML.

We partition ML into blocks of size

n1 = j1 − 1 ≥ 0,
n2 = i1 − j1 + 1 > 0, and
n3 = n − i1 ≥ 0
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so that n1 + n2 + n3 = n. Under this block scheme, ML has
the form

ML =


n1 n2 n3

n1 0 l a

n2 0 h r

n3 0 0 0

,
or in case n1 = 0

ML =

( n2 n3

n2 h r

n3 0 0

)
,

or in case n3 = 0

ML =

( n1 n2

n1 0 l

n2 0 h

)
,

where each of h, l, r, and a is a subalgebra consisting of the
full matrix subspace of the appropriate size. All three cases
are treated simultaneously by the below argument.

ML admits the structural decomposition

ML = hn
(
(l+̇r) n a

)
obeying multiplication containment relations below.

[·, ·] h l r a

h h l r 0
l l 0 a 0
r r a 0 0
a 0 0 0 0

(where l = a = 0 in case n1 = 0 and r = a = 0 in case n3 = 0.)
We require the dimension of Ker µ.
We see that for h ∈ h and r ∈ r we have [h, r] = hr, since

rh = 0, and similarly with l ∈ l we have [h, l] = −lh. Thus
[h, r] = r and [h, l] = l. Furthermore, for l ∈ l and r ∈ r, we
have [l, r] = lr, whereby [l, r] = a. Finally, [h, h] produces
only the traceless matrices, thus dim[h, h] = dim h − 1.

In light of these observations, we find that Ker µ has di-
mension

n2
1n2

2 + 2n2
1n2n3 + n2

1n2
3 + 2n1n3

2 + 4n1n2
2n3 + 2n1n2n2

3

−n1n2 − n1n3 + n4
2 + 2n3

2n3 + n2
2n2

3 − n2
2 − n2n3 + 1.

Each pairing of subspaces that is killed by the bracket
yields its full basis of rank-one tensors to Ker µ. We have:

Subspace pair Rank-one tensors contributed
µ(h ⊗ a) = 0 = µ(a ⊗ h) 2n1n2

2n3
µ(l ⊗ a) = 0 = µ(a ⊗ l) 2n2

1n2n3
µ(r ⊗ a) = 0 = µ(a ⊗ r) 2n1n2n2

3
µ(a ⊗ a) = 0 n2

1n2
3

µ(l ⊗ l) = 0 n2
1n2

2
µ(r ⊗ r) = 0 n2

2n2
3

Further, h is isomorphic to Mn2×n2
F , which is zero product

determined as a Lie algebra by Theorem 8. By Theorem 13
there are n4

2 − n2
2 + 1 rank-one tensors in h⊗ h that µ kills. The

above listed rank-one tensors in Ker µ are linearly independent
by construction from block pairings. This leaves

2n1n3
2 + 2n3

2n3 + 2n1n2
2n3 − n1n2 − n1n3 − n2n3

rank-one tensors in Ker µ we have left to construct.
We examine h ⊗ r, r ⊗ h, and (h+̇r) ⊗ (h+̇r). We will find

that these subspaces contribute 2n3
2n3 − n2n3 tensors to our

basis.
Consider the 2n3

2n3 − 2n2
2n3 tensors

Ti, j,l,q = ei, j ⊗ el,q ∈ h ⊗ r

and
T i, j,l,q = el,q ⊗ ei, j ∈ r ⊗ h

for i, j, l ∈ (n1, n1 + n2] and q ∈ (n1 + n2, n1 + n2 + n3] with
j , l.

Additionally, we have 2n2
2n3 − 2n2n3 tensors

S i, j,q =
(
ei, j − ei, j+1

)
⊗

(
e j,q + e j+1,q

)
∈ h ⊗ r

and
S i, j,q =

(
e j,q + e j+1,q

)
⊗

(
ei, j − ei, j+1

)
∈ r ⊗ h

with i ∈ (n1, n1 + n2], j ∈ (n1, n1 + n2 − 1], and q ∈
(n1 + n2, n1 + n2 + n3].

Finally, we have n2n3 tensors of the form

R(i, q) =
(
ei,i + ei,q

)
⊗

(
ei,i + ei,q

)
∈ (h+̇r) ⊗ (h+̇r)

for i ∈ (n1, n1 + n2] and q ∈ (n1 + n2, n1 + n2 + n3], giv-
ing the desired 2n3

2n3 − n2n3 rank-one tensors. By applying
µ(x ⊗ y) = [x, y], we see that each tensor above is in Ker µ.
We must show that these tensors are linearly independent.

Expanding S i, j,q we see that

S i, j,q = ei, j ⊗ e j,q − ei, j+1 ⊗ e j+1,q︸                         ︷︷                         ︸
<Span{Ti, j,l,q}

+ ei, j ⊗ e j+1,q − ei, j+1 ⊗ e j,q︸                         ︷︷                         ︸
∈Span{Ti, j,l,q}

is not in the span of the Ti, j,l,q tensors. A similar observation
shows that S i, j,q is not in the span of the T i, j,l,q tensors.

Expanding R(i, q) we have

R(i, q) = ei,i ⊗ ei,i︸   ︷︷   ︸
∈h⊗h

+ ei,q ⊗ ei,q︸    ︷︷    ︸
∈r⊗r

+ ei,i ⊗ ei,q + ei,q ⊗ ei,i︸                   ︷︷                   ︸
∈h⊗r+̇r⊗h

.

Since ei,i ⊗ ei,i and ei,q ⊗ ei,q are in h ⊗ h and r ⊗ r, respec-
tively, and since tensors from those blocks have been ac-
counted for above, we may subtract those terms, leaving
R′(i, q) = ei,i ⊗ ei,q + ei,q ⊗ ei,i. R′(i, q) is not in the span of{
Ti, j,l,q,T i, j,l,q

}
since we require j , l in Ti, j,l,q and T i, j,l,q.
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R′(i, j) is linearly independent of the S i, j,q and S i, j,q tensors
in case i = n1 + n2, since we require j ≤ n1 + n2 − 1 in S i, j,q

and S i, j,q. Now, consider S i,i,q + S i,i,q where i < n1 + n2
We have

S i,i,q + S i,i,q = R′(i, q) + T −
(
ei,i+1 ⊗ ei+1,q + ei+1,q ⊗ ei,i+1

)
with T ∈ Span

{
Ti, j,l,q,T i, j,l,q

}
, so we have

R′(i, q) = S i,i,q + S i,i,q − T + R′′(i, q)

where R′′(i, q) = ei,i+1 ⊗ ei+1,q + ei+1,q ⊗ ei,i+1.
Now, if i = n1 + n2 − 1 we are done (as above). If

i < n1 + n2 − 1 we may reduce R′′(i, q) using the same method
just employed, and so by induction we are done. That is
to say that Ti, j,l,q, T i, j,l,q, S i, j,q, S i, j,q, and R(i, j) are linearly
independent.

Next, we examine h ⊗ l, l ⊗ h, and (h+̇l) ⊗ (h+̇l). The con-
sideration of these subspaces is symmetric with the subspaces
considered above, and so we will find that these subspaces
contribute 2n1n3

2 − n1n2 tensors to our basis of Ker µ.
Finally, we examine l⊗r, r⊗l, and (l+̇r)⊗(l+̇r). We proceed

similarly to the discussion of h and r above, and we will find
that l and r contribute the remaining 2n1n2

2n3 − n1n3 rank-one
tensors needed to span Ker µ.

Consider the 2n1n2
2n3 − 2n1n2n3 tensors

Ui, j,l,q = ei, j ⊗ el,q ∈ l ⊗ r

and
U i, j,l,q = el,q ⊗ ei, j ∈ r ⊗ l

for i ∈ (0, n1], j, l ∈ (n1, n1 +n2], and q ∈ (n1 +n2, n1 +n2 +n3]
with j , l.

Additionally, we have 2n1n2n3 − 2n1n3 tensors

Vi, j,q =
(
ei, j − ei, j+1

)
⊗

(
e j,q + e j+1,q

)
∈ l ⊗ r

and
V i, j,q =

(
e j,q + e j+1,q

)
⊗

(
ei, j − ei, j+1

)
∈ r ⊗ l

with i ∈ (0, n1], j ∈ (n1, n1 + n2 − 1], and q ∈ (n1 + n2, n1 +

n2 + n3].
Finally, we have n1n3 tensors of the form

W(i, q) =
(
ei,n1+n2 + en1+n2,q

)
⊗

(
ei,n1+n2 + en1+n2,q

)
∈ (l+̇r) ⊗ (l+̇r)

for i ∈ (0, n1] and q ∈ (n1 + n2, n1 + n2 + n3], giving the
remaining 2n1n2

2n3 − n1n3 rank-one tensors. Again, the above
tensors were chosen so that applying µ(x ⊗ y) = [x, y] results
in 0. Below we verify that they are linearly independent.

Expanding Vi, j,q we see that

Vi, j,q = ei, j ⊗ e j,q − ei, j+1 ⊗ e j+1,q︸                         ︷︷                         ︸
<Span{Ui, j,l,q}

+ ei, j ⊗ e j+1,q − ei, j+1 ⊗ e j,q︸                         ︷︷                         ︸
∈Span{Ui, j,l,q}

is not in the span of the Ui, j,l,q tensors. A similar observation
shows that V i, j,q is not in the span of the U i, j,l,q tensors.

Expanding W(i, q) we have

W(i, q) = ei,n1+n2 ⊗ ei,n1+n2︸             ︷︷             ︸
∈l⊗l

+ en1+n2,q ⊗ en1+n2,q︸               ︷︷               ︸
∈r⊗r

+ ei,n1+n2 ⊗ en1+n2,q + en1+n2,q ⊗ ei,n1+n2︸                                        ︷︷                                        ︸
∈l⊗r+̇r⊗l

.

l ⊗ l and r ⊗ r are accounted for above, so we may subtract
their terms, leaving

W ′(i, q) = ei,n1+n2 ⊗ en1+n2,q + en1+n2,q ⊗ ei,n1+n2 .

W ′(i, q) is not in the span of
{
Ui, j,l,q,U i, j,l,q

}
since we require

j , l in Ui, j,l,q and U i, j,l,q. We also see immediately that
W ′(i, q) is not in the span of

{
Vi, j,q,V i, j,q

}
since we require

j < n1 +n2 in Vi, j,q and V i, j,q. Thus we have that Ui, j,l,q, U i, j,l,q,
Vi, j,q, V i, j,q, and W(i, j) are linearly independent.

Having explicitly constructed a basis for Ker µ consisting
of rank-one tensors, the proof is complete. �
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