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Definitions

Let (A, ∗) be an algebra over alg-closed, char-0 K.

Definition (preserve zero products)

A bilinear map ϕ : A×A→ X is said to preserve zero products if

ϕ(x, y) = 0 whenever x ∗ y = 0.

Definition (zero product determined)

A is said to be zero product determined if to each bilinear map ϕ : A×A→ X
that preserves zero products there is a linear map f : A2 → X such that

ϕ(x, y) = f(x ∗ y).
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Our Program

Theorem (Wang, Yu, and Chen 2011)

Let q be a parabolic subalgebra of a simple Lie algebra g over K. q is zero product
determined.

Can we extend this result:
to semisimple g?
to reductive g?
to other constructions on q?
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Proposition

Let q be a parabolic subalgebra of a reductive Lie algebra g over K.
1 q is zero product determined.
2 Der q is zero product determined.

Proposition

Let L(n, k) be the Lie algebra of consisting of all (m+ n)× (m+ n) matrices of
the form (m n

m ∗ ∗
n 0 0

)
with entries in K. L(n, k) is zero product determined.
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Theorem (B and Huang 2015)

Let (A, ∗) be an algebra.
1 A is ZPD iff Ker ∗ is generated by rank-one tensors in A⊗A.
2 Abelian Lie algebras are ZPD.
3 A direct sum is ZPD iff each summand is ZPD.

Theorem (B and Huang manuscript pending submission)

Let q be a parabolic subalgebra of a reductive Lie algebra g over K or R
1 q decomposes as q = gZ+̇c+̇[q, q]

2 L = {deriv. D|D(q) ⊆ gZ , D([q, q]) = 0} is an ideal of Der q.
3 Der q ∼= L⊕ ad q.
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Proof of Main Results

q is ZPD
Write q = gZ ⊕ qS .
qS is ZPD by Wang, Yu, and Chen 2011 and direct sums.
gZ is ZPD since it is abelian.
q is ZPD by direct sums.
Der q is ZPD
Der q ∼= L⊕ ad q.
ad q is ZPD by Wang, Yu, and Chen 2011 and direct sums.
L ∼= L(n, k), ZPD by the next proposition.
Der q is ZPD by direct sums.
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Proof of Main Results

L(n, k) is ZPD
Dimension-counting shows

dimKer ∗ = n4 + 2n3k + n2 + n2k2 − n2 − nk + 1

n4 − n2 + 1 from upper-right block, since it is ZPD
n2k2 from upper-left block, since it is abelian
2n3k − 2n2k of the form

ei,j ⊗ el,n+q, el,n+q ⊗ ei,j : i, j, k ≤ n, q ≤ k, j 6= l

2n2k − 2nk of the form

(ei,j − ei,j+1)⊗ (ej,n+q + ej+1,n+q),

(ej,n+q + ej+1,n+q)⊗ (ei,j − ei,j+1) : i ≤ n, j ≤ n− 1, q ≤ k

nk of the form

(ei,i + ei,n+q)⊗ (ei,i + ei,n+q) : i ≤ n, q ≤ k
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