# Chapter 1 Exercises
## Exercise 1.4

. assertion
. assertion
not assertion
assertion
assertion
assertion
assertion
not assertion
assertion
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## Exercises 1.13

Which of the following is possible? If it is possible, give an
example. If it
is not possible, explain why.

1. A valid deduction that has one false hypothesis and one true
hypothesis.

POSSIBLE

H1. Paris is in France (true)

H2. Big Ben in is Paris (false)
Conc. Big Ben is in France (false)
(valid)

2. A valid deduction that has a false conclusion.
POSSIBLE
Same deduction above works.

3. A valid deduction that has at least one false hypothesis, and a
true
conclusion.

POSSIBLE

H1. If this homework is hard, then logic is hard. (true)
H2. This homework is hard (false)

Conc. Logic is hard. (true)

(valid)

(Logic is indeed hard, but for reasons other than those found in
this
homework assignment. This homework is pretty straightforward.)



4. A valid deduction that has all true hypotheses, and a false
conclusion.

IMPOSSIBLE

In order for a deduction to be valid, the conclusion must be true
whenever the hypotheses are true.

5. An invalid deduction that has at least one false hypothesis, and a
true conclusion.

POSSIBLE

H1. Either I'll have a soup or a salad. (true)
H2. I'll have a salad. (false)

Conc. I'll have a soup. (true)

(invalid)

(This has the form "Either A or B; B; therefor A". This type of
reasoning is invalid, whether or not A is true.)

## Exercise 1.14

H1. The robber(s) left in a truck

H2. No one other than A, B, and C was involved.
H3. C never commits a crime without inviting A.
H4. B doesn't know how to drive.

Was A involved?

From H1, H2, and H4, A or C must have driven, so at least one of
them

was involved. In case it were A who drove, then we're done-—-he's

involved. On the other hand, if it were C who drove, then H3 says
that

C would have invited A, so A at least knew about the heist
beforehand,

which we can go ahead and count that as "involved."

## Exercise 1.15
1.

If Alice is a Knight, then so is Bob, so in that case, Bob is
reliable. But then Bob says that Alice is a Knave, which contradicts
what Alice said about herself. Since assuming that Alice is a Knight
leads to a contradiction, Alice must not be a Knight, so Alice is
definitely a Knave.



Since Alice is a Knave, we know that Bob was telling the truth about
her, so Bob must be a Knight.

If Charlie were a Knave, then his statement "not all of us are
Knights" would be false, so all of them would be Knights, including
Charlie. Since this is impossible, Charlie can't be a Knave, and so
must be a Knight.

Since Charlie is a Knight, his statement must be true, so at least
one

of Diane or Ed is a Knave. Diane's statement, "not all of us are

Knaves," is already known to us to be true, since Charlie is a
Knight,

so since Diane just told the truth, so must be a Knight. That makes

Ed a Knave.

If George were a telling the truth, then Frances would have just

claimed to be a Knave. But no one can ever claim to be a Knave
(think

about it), so George is a lying sack of Knave.

George also said that Frances is a Knave. Since we know George
always
lies, Frances must be a Knight.

## Exercise 1.16
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## Exercise 1.17

1.



I claim that the secret code is 3521. To verify, we check that it

has

the right number of "bulls" and "cows" with the previous guesses.

My Code | Guess | "Bulls" | "Cows" | Works?

3521 | 1234 | © | 3 | yes

3521 | 2354 | © | 3 | yes

3521 | 3642 | 1 | 1 | yes

3521 | 5143 | © | 3 | yes

3521 | 4512 | 1 | 2 | yes

The above computations verify that my code is at least _consistent_

with the answers to the previous guesses. But the textbook author
tells us that these guesses give us enough to find the code, so mine
must be it.

I claim that the secret code is 4155. We verify below:

My Code | Guess | "Bulls" | "Cows" | Works?
4155 | 1234 | © | 2 | yes
4155 | 4516 | 1 | 2 | yes
4155 | 4621 | 1 | 1 | yes
4155 | 6543 | © | 2 | yes
4155 | 5411 | © | 3 | yes

So, my code is consistent, and again
there's only one, so it must be the one I provided.

the textbook author tells us



# Chapter 2 Part 1
Exercises 2.13, 2.14, 2.21, 2.25, 2.34, 2.36, 2.39, 2.40
## Exercise 2.13

: Gregor plays first base.

: The team will lose.

Evan plays first base.

: There will be a miracle.

: Gregor's mom will bake cookies.

X X X % X
O=EmMmro

1. G => L
2. (Gv E) == -M
3. (G v E) == M
4, M => L
5. M == -C

## Exercise 2.14
1.

* M: Dorothy plays the piano in the morning.
* C: Roger wakes up cranky.
* D: Dorothy is distracted.

H1: M => C
H2: -D => M
Conc: -C => D

It will rain on Tuesday.
It will snow on Tuesday.
: Neville will be sad.
: Neville will be cold.

* X X X
NnN2unx

H1: Rv S

H2: R == N
H3: S => C
Conc: N v C

* Z: Zoog remembered to do his chores.
* C: Things are clean.
* N: Things are neat.

Hl1: Z => (C & —N)
H2: -Z = (N & -C)



Conc: (Nv C) & -(N & Q)
## Exercise 2.21

C) => -(A => B)
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ercises 2.25

=> (A & B) is not true when A =T an
= (T & F)
=>F

=> ( A
=> (F
= F

F and B

) is true when A

T and B

B) => A is true when A
T) =T
= T
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3. (A <=>B) v (A& -B) is true when A =T and B = T, since
(T<=>T) v (T&-T)
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& -T)
& F)
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Z) is true when X =T, Y =T, and Z =T,
(T=T) = (T=T)
T=>T
T

## Exercise 2.34

1. AvBv -C, (AvB) & (C=>A)

A|B|]C|]AvBv-C| (AvB)&(C=>A)
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They are not logically equivalent because they disagree in the
third
and the eight rows.



2. (P==>0Q) v (Q==>P), PvQ
P]Q]|] (P==Q) v(Q=>P) | PvQ
T|T|T | T
T|F|T | T
FIT|T | T
FIF | T | F
They are not logically equivalent because they disagree in the
fourth
row.
3. (X&Y) =17, Xv (Y= 72)
XY ]Z] (X&Y)=Z]Xv (Y= 2)
T|T|T]|T | T
T|T]|F|F | T
T|F|T]|T | T
T|F|F|T | T
FI T | T]|T | T
FIT|F|T | F
FIF|T]|T | T
F|IFI|F|T | T
They are not logically equivalent because they disagree in the
second

and the seventh rows.

## Exercise 2.36

1.

Rules of negation ("De Morgan's Laws")

mm -



== -A & -B

-(A v B)

| -A & -B

A| B | -(AvB)

>B) == A& -B

—(A =

| A& -B

A|B | -(A=>B)

=> B) | A <=> -B

B | -(A <

=>

Commutativity of &, v, and <

2.

A&B==B&A

A|B|A&B|BG&A

= B v A

A v B




Associativity of & and v

3.

(A&B) &C=A& (B &C)

A|B|C|A&B|B&C| (A&B) &C | A& (B & C)
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## Exercise 2.39

—-((A v B) == (C &D))
(AvB) &-(C&D)
(AvB) & (-Cv -D)
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. —(((A == B) == C) == D)

== ((A => B) => C) & -D

. —((P=>(Q & -R)) v (P& -Q))
= —(P => (Q & -R)) & -(P & -Q)
= (P & -(Q & -R)) & (-P v Q)
= (P& (-Q v R)) & (-P v Q)
=P & (-Q v R) & (-P v Q)

Exercise 2.40

. It's raining, and the bus is on time.

. Either I'm not sick or I'm not tired.

. —(P v (Q &R))

== -P & -(Q & R)
== -P & (-Q v -R)
The Pope isn't here, and either the Queen isn't here or the Russian

isn't here.

. -[(T=> (I voO0))&(-BvA)I
== —(T=>(IvO0))v-(-BvA)
= (T &-(I vO0)) v (B&-A)
= (T &-I & -0) v (B & -A)
Either Tom forgot his backpack and Sam ate neither a pickle nor a
potato or Bob will have lunch and Alice won't drive to the store.



# Chapter 2 Part 2

Exercises 2.41, 2.42, 2.43, 2.45, 2.47, 2.49, 2.52, 2.53

## Exercise 2.41

Show that A => B is not logically equivalent to its converse B => A.
We will show this with a truth table.

A|B|A==>B|B=>A
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They disagree in rows 2 and 3, so they are not logically equivalent.
## Exercise 2.42
Show that A => B is not logically equivalent to its inverse -A => -B.
Again, we'll use a truth table.

A=>B | -A|-B| -A=>-B

4 4 4
T T T

e B B B
e |

— <™

They disagree in rows 2 and 3, so they are not logically equivalent.

## Exercise 2.43

Show that A => B is logically equivalent to its contrapositive -B => -
A.

No surprise, we'll use a truth table.

A|B|A=B|-A| -B| -B=>-A

mm— -

i B |

e Bt B B

47
——mm
— 4™

In every row they agree, so they are logically equivalent.



## Exercise 2.45
State (a) the converse and (b) the contrapositive of each implication.
1. If the students comes to class, then the teacher lectures.
Converse: If the teacher lectures, then the students come to class.
Cntrpstv: If the teacher didn't lecture, then the students didn't
come to class.
(or)
If the teacher doesn't lecture, then the students don't
come to class.
(Tense is hard to model in propositional logic, so
either of the above might be the contrapositive. A
similar
comment applies to all of the following problems.)
2. If it rains, then I carry my umbrella.
Converse: If I carry my umbrella, then it rains.
Cntrpstv: If I didn't carry my umbrella, then it didn't rain.
3. If I have to go to school this morning, then today is a weekday.

Converse: If today is a weekday, then I have to go to school this
morning.

Cntrpstv: If today isn't a weekday, then I don't have to go to
school this morning.

4. If you give me $5, I can take you to the airport.
Converse: If I can take you to the airport, then you give me $5.

Cntrpstv: If I can't take you to the airport, then you won't give
me $5.

5. If the Mighty Ducks are the best hockey team, then pigs can fly.
Converse: If pigs can fly, then the Mighty Ducks are the best
hockey

team.

Cntrpstv: If pigs can't fly, then the Mighty Ducks aren't the best
hockey team.

6. Alberta is a province.



Converse: Alberta is a province.
Cntrpstv: Alberta is a province.

The assertion is merely a propositional atom, i.e., it's of the
form
P. If it were P => Q (or P v Q or P & Q) then taking converse or
contrapositive would be meaningful, but since it's only an atom,
converse and contrapositive leave it the same. (Think about how
taking the reciprocal of 1 doesn't do anything, or taking the
negative of @ doesn't do anything, in the realm of numbers. Similar
concept.)

7. If (you want will do well in your math class), then (you need to do
all of the homework problems).

Converse: If you need to do all of the homework problems, then you
want will do well in your math class.

Cntrpstv: If you do not need to do all of your homework problems,
then you do not want will do well in your math class.

(I think there's a typo in the book <.<)
## Exercise 2.47
Answer each of the questions below and justify your answer.

1. Suppose (_A_ & _B_) => _C_ is neither a tautology nor a
contradiction. What can you say about the deduction
" A, B, .:_C"7?
Well, if (_A_ & _B_) => _C_ isn't a tautology, then there's a
valuation in which (_A_ & _B_) is true but _C_ is not. In that
valuation, the hypotheses of "_A_, B, .: _C_ " would be true but
the conclusion would be false, so that deduction is invalid.

2. Suppose _A_ is a contradiction. What can you say about the
deduction
" A, B, .:_C"?

If _A_ is a contradiction, then it's false in every valuation, so

there are zero valuation in which the hypotheses are true. In
each

of those valuations (i.e., all zero of them) the conclusion
happens

to be true as well, so the deduction is valid (although we can
all

agree that it's valid for silly reasons).



3. Suppose that _C_ is a tautology. What can you say about the
deduction
" A, B_.: _C"7?
If the conclusion _C_ is always true, then it's true whenever the
hypotheses are true, so the deduction is valid (again, for silly
reasons).

## Exercise 2.49

We will use truth tables to show that these are valid deductions, but
to

save on space, we will only show valuations (rows) in which all the
hypotheses are true (as the directions suggest).

1. repeat: A, .: A

2. &intro: A, B, .: A& B

A| AvB
__+ ______
T| T
v-intro: B, AvB
B| AvB
__+ ______
T| T



5. v-elim: A v B, -A, .: B

A|B|]AVB | -A|B

F i T i T i T i T
6. =>-elim: A => B, A. .: B
A|B|A==B|A|B
T i T i T i T i T
FIT|T | T | T

7. <=>-intro: A =>B, B=> A, .: A <=>B

A|B|A=B|B=A]|A<=>8B
T|T|T | T | T
FIF|T | T | T

A|B|A<=B | A=8B
T|T|T | T

FIF | T | T
<=>-elim: A <=> B, .: B =>A

A|B|A<==B | B=A

9. proof by cases: AvB, A==C(C, B=>¢(C, .:C

(this one is a little confusing, so we'll fill out the entire truth
table)

A|B|]C|AvB|A=C|B=>C|C
T|IT|T|T | T | T | T
T|T|F|T | F | F | F
TIF|T]|T | T | T | T
T|IF|F|T | F | T | F
FI T | T]|T | T | T | T
FIT]|F|T | T | F | F
F|1F]|T]|F | T | T | T
F|I|F]|F]|F | T | T | F



##

3.

##

(I

Taking a look at the table, the three hypotheses are true in
valuations (ie, rows) 1, 3, and 5, and in each of those three
valuations C is also true, so the deduction is valid.
Exercise 2.52

(AvB) &(Y=>2), .: Y =12

&elim with A=A vBand B=Y = Z

(AvB) &(Y=12Z), .: (AvB)&I(Y=2)

repeat with A = (A v B) & (Y => Z)

AvB, .: (AvB)v(Y=>72)

Y = 7

v=intro with A A v B and B

.AvB,Y=17Z, .: (AvB) & (Y= 2)

&intro with A AvBand B=Y =7
Exercise 2.53

m doing extra work by specifying a translation key. The directions

don't ask us to, but I'm just putting it here to make it easier for
you to read.)

1.

Proof by cases, with translation key:

A = Susie will stop at the grocery store.
B = Susie will stop at the drug store.

C = Susie will buy milk.

&intro, with translation key:

A = My opponent is a liar.

B = My opponent is a cheat.

. Repeat, with translation key:

A = John went to the store.

. =>-elim, with translation key:

A
B

I have $50.
I am able to buy a new coat.



# Chapter 3
Exercises 3.20, 3.25, 3.29, 3.30, and 3.33
## Exercise 3.20

Give a two-column proof of the deduction
(PvQ = (R&S), (RvS) = (P&Q), .: P=>4Q

1. (Pv Q) =>(R&S) Hypothesis

2. (RvS) = (P &AQ) Hypotheses

3. . P Assume

4., . PvaQ v—=intro line 3

5. . R&S =>—elim lines 1, 4
6. . R &elim line 5

7. . RvS v—=intro line 6

8. . P&AQ =>—elim lines 2, 7
9. . Q &elim line 8

10. P == Q =>-intro lines 3-9

## Exercises 3.25
Give a two-column proof for each of the deductions.
#H#E 1

(P& -Q) = (QVvR), .: (P&-Q) == (RvYS)

1. (P & -Q) == (Q v R) Hypothesis

2. . P& -Q Assume

3. . Q VR =>-elim lines 1, 2
4. . -Q &elim line 2

5. . R v—elim lines 3, 4
6. . Rv S v—intro line 5

7. (P & -Q) == (R v S) =>-intro lines 2-6
#it# 2

P=>(QVR);Q=>_R; R=>5S5, .: P=>5

1. P = (Q v R) Hypothesis

2. Q = -P Hypothesis

3. R=>S Hypothesis

4. . P Assume

5. . QVvR =>—elim lines 1, 4

6. Q Assume

7. . —-P =>—elim lines 2, 6

8. . .P&-P &intro lines 4, 7

9. . -Q Proof by contradiction lines 6-8
10. . R v—-elim lines 5, 9



11. . S =>-elim lines 3, 10
12. P == S =>-intro lines 4-11

## Exercise 3.29

P: The Pope is here.

Q: The Queen is here.
R: The Russian is here.

(P& —-Q) =R, .: P=> (Q v R)

### Proof by Contradiction

1. (P & -Q) =>R Hypothesis

2. . =(P => (Q v R)) Assume

3. . P& -(Q v R) Log equiv line 2

4. . P& -Q & -R Log equiv line 3

5. . P& -Q &-elim line 4

6. . R =>—elim lines 1, 5

7. . R &-elim line 4

8. . R& -R &intro lines 6, 7

9. P = (Q v R) Proof by contradiction lines 2-8

### Alternate Proof

1. (P & -Q) == R Hypothesis

2. . P Assume

3. . Qv -Q Tautology

4, . Q Assume

5. QVvR v—-intro line 4

6. . Q=>(Q v R) =>—intro lines 4-5
7. . —Q Assume

8. . P& -Q &intro lines 2, 7
9. . . R =>-elim lines 1, 8
10. . . Q v R v—intro line 9

11. . -Q == (Q v R) =>-intro lines 7-10
12. . Q v R Proof by cases lines 3, 6, 11
13. P => (Q v R) =>-intro lines 2-12

## Exercises 3.30
Write a proof of each of these Theorems in English prose.
#H# 1
Hypotheses:
1. If the Pope is here, then the Queen is here.

2. If the Queen is here, then the Russian is here.

Conclusion:



If the Pope is here, then the Russian is here.

Proof:
Suppose the Pope is here. Since the Pope is here, Hypothesis 1 gives
us that the Queen is here. Since the Queen is here, Hypothesis 2
gives
us that the Russian is here. So, if the Pope is here, then so is the
Russian.

#H## 2

THEOREM. Assume:
(a) If the Pope is here, then the Russian is here.
(b) If the Queen is here, then the Spaniard is here.
(c) The Pope and the Queen are both here.
Then the Russian and the Spaniard are both here.

Proof:
Hypothesis (c) gives us that the Pope is here, so Hypothesis (a)
gives
us that the Russian is here. Hypothesis (c) also gives us that the
Queen is here, so Hypothesis (b) gives us that the Spaniard is here.
Thus, both the Russian and the Spaniard are here.

#H## 3

THEOREM. Assume:
(a) If Adam is here, then Betty is here.
(b) If Betty is not here, then Charlie is here.
(c) Either Adam is here, or Charlie is not here.
Then Betty is here.

Proof:
We will consider two cases:
(Case 1) Assume Adam is here. Then by Hypothesis (a) Betty is here,
so we're done.
(Case 2) Assume Adam is not here. Then Hypothesis (c) gives us that
Charlie is not here. Since Charlie is not here, Hypothesis (b) tells
us that Betty can't not be here (if she were not here, then Charlie
would be here). To say Betty can't not be here is just to say that
she is here, so we are done.

### 4

THEOREM. Assume:
(a) If Jack and Jill went up the hill, then something will go wrong.
(b) If Jack went up the hill, then Jill went up the hill.
(c) Nothing will go wrong.
Then Jack did not go up the hill.



Proof:

Assume for contradiction that Jack did go up the hill. Then
hypothesis

(b) gives us that Jill also went up the hill, so both Jack and Jill

went up the hill. Then Hypothesis (a) gives us that something will
go

wrong. This contradict Hypothesis (c), so our assumption that Jack

went up the hill must have been wrong, Jack must not have gone up
the

hill.

## Exercise 3.33

1) Set A=T, B=F. Then AvB=T, but A=>B = F.

2) Set P=T, Q=F. Then Pv Q=T, but P& Q = F.

3) Set A=F, B=T, C=F. Then A= (B&C) =T, -A== (Bv<C_C) =T,
but C = F.

4) Set P=F, Q=F, R=T. Then P=>0Q =T, -P =R = T, but
Q& (PVvR) =F.



# Chapter 4

Exercises 4.9, 4.10, 4.24, 4.27, 4.31

## Exercises 4.9

Provide a 2-column proof of each deduction.

#i## 1) (a €A) = (aé¢B), (bhEeEB)=(a€B), -~ (bEB) = (aé&A)

1 ) Hypothesis

2 ) Hypothesis

3 Assume (for =-intro)

4, >—elim (lines 2, 3)

5. B) Logical equivalence (line 4)
6 B) = —-(a € A) Logical equivalence (line 1)
7 A) »>—elim (lines 5, 6)

8. . a¢A Logical equivalence (line 7)
9. (b € B) = (a & A) »—intro (lines 3-8)

### 2) (P EX) &(QEX), (PEX) » ((q&X) vy¥=2)), ~Y=o.

1. (p € X) & (g € X) Hypothesis

2. (p €X)=((qgé&X)v(Y=2)) Hypothesis

3. p €X &elim (line 1)

4. (g € X) v (Y = o) -—elim (lines 2, 3)
5. q € X &elim (line 1)

6. Y =0 v—elim (lines 4, 5)

A purist would require an intermediate step, where we write

"-(q € X) v (Y = @2)" with justification "Logical equiv. (line 4)". I
won't require that level of detail fro you. We all understand that
"g € X" and "-(g € X)" mean exactly the same thing.

## Exercises 4.10
Write your proofs in English.

### 1) Assume: (a) If p € Hand q € H, then r € H.
(b) g € H.
Show that if p € H, then r € H.

Assume p € H.

Then p € H and q € H.

Since p € H and q € H implies r € H, we have r € H.

Since assuming p € H led to r € H, we have show that p € H implies r €
H.

(Note: Since we're trying to prove an "if ... then ..." statement, our
first step should be to assume the antecedent. Then our proof is done



once we have arrived at the consequent. [Look up those terms,
"antecedent" and '"consequent," in your book if you're forgotten
them.])

(Other Note: A proof in Natural Language should be thought of as an
outlines of a 2-column proof. You should write enough details so that
one of your classmates can take your Natural Language proof and
convert

it into a 2-column proof without any significant work on their part.
If you have to explain how to convert your English proof into a 2-
column

proof, then your English proof is not detailed enough.)

### 2) Assume: (a) If X # @, then a € Y.
(b) If X = @, then b € Y.
(c) If either a €E Yor b €Y, thenY # @.
Show Y # @.

We know that either X # @ or X = @, so we proceed in cases.
(case 1) Assume X # @.
Then a €Y,
so either a € Y or b €Y,
so Y # @ as desired.
(case 2) Assume X = @.
Then b €Y,
so either a € Y or b €Y,
so Y # o as desired.
Since in either case we arrive at Y # @, we conclude that Y # @.

## Exercises 4.24
Write a 2-column proof to justify each assertion.
### 1) XcY=>XcZ, XcZI=>Xx€EZ x¢&Z, ~~X¢Y.

(I'll give you a bonus. I'll do an English proof, and then convert it
into a 2-col proof.)

We know x ¢ Z. We want X ¢ Y.

Since x & Z, by contrapositive, we get that X ¢ Z.

Since X ¢ Z, again contrapositive gives us X ¢ Y, which is what we
wanted.

1. XcY=XcZ Hypothesis

2, XcZ=x¢€!Z Hypothesis

3. x ¢ Z Hypothesis

4, x ¢ Z>X ¢ Z Logical equiv (line 1)
5. X ¢ Z »>—elim (lines 3, 4)

6. X ¢ Z=>X¢egY Logical equiv (line 2)
7. X¢Y ->—elim (lines 5, 6)



(Hopefully you can see what I mean about an English proof being an

outline of a 2-col proof.)

#i##t 2) (X EY) = (X c¥Y), (X EY) v (YcX), ~ (XcY)v (Y cX).

1. (X €Y) = (X cY)

2. (X €Y) v (Y cX)

3. . X€EY

4. . XcY

5. . (X cY) v (Y cX)

6. (X €EY) = ((XcY)v (Y cX))
7. (Y ¢ X)

8. . (XcY)v (Y cX)

9. (YcX)=>((XcY)v (Y cX))
10. (X cY) v (Y c X)

## Exercises 4.27

Hypothesis
Hypothesis

Assume (for =-intro)
s—elim (lines 1, 3)
v—intro (line 4)
»—intro (lines 3-5)
Assume (for =-intro)
v-intro (line 7)
-—intro (lines 7-8)
Proof by cases (lines 2, 6, 9)

Use the symbolization key on page 63, and write a 2-col proof for

each.

###t 1) (resS) = ((r0s)vi(irgsS)), -~ ((tesS)&-(r0s))=(r¢g5s)

1. (r €S) = ((r0s)vi(ré&s))
2 (t €S) & =(r0s)

3 . €S

4 . (ros)vi(rgs)

5. « « =(r 0 s)

6. . . ré¢s

7 . (res) &(rgs)

8. . r¢s

3-7)

9. ((t €5S) &=(r0s))=(regs)

### 2) If either Roger is a student or Tess is not a student, then Sam
is older than Tess. If Tess is a student, then Roger is also a

student.
- Sam is older than Tess.

((res) v(tes)) - (s0t)
(t €S) = (r €es)

. ~((res)vi(tegs))

. ~(res) &-(tegs)

reé¢s) & (tes)

P OoO~NOOUEAWNERF
MR MM
nuunvmonm

Hypothesis

Assume (for =-intro)

Assume (for contradiction)
s—elim (lines 1, 3)

&elim (line 2)

v-elim (lines 4, 5)

&intro (lines 3, 6)

Proof by contradiction (lines

»—intro (lines 2-8)

Hypothesis

Hypothesis

Assume (for contradiction)
Logical equiv (line 3)
Logical equiv (line 4)

&elim (line 5)

»>—elim (lines 2, 6)

&elim (line 5)

&intro (lines 7, 8)

Proof by contradiction (lines



3-9)
11. s 0 t s—elim (lines 1, 10)

## Exercises 4.31
Prove each deduction in English.

### 1) Assume A and B are sets, and let C = {a € A | a € B}.
Show that if ¢ € C, then c € B.

We are trying to prove an implication, so assume the antecedent.
Assume ¢ € C. We need to show that c € B.

By the definition of C, we have that C consists of all objects a € A
such that a € B, so we know that since c € C, c € A and c € B.

In particular, we have ¢ € B, as desired.

### 2) Let A = {x ER | x*2 - 5x = 14}.
Show that if a € A, then a < 10.

Let a € A.

By the definition of A, we have a”2 - 5a = 14.

By a little algebra, we have that either a = 7 or a = -2.

(case 1) If a = 7, then a < 10, as desired.

(case 2) If a = -2, then a < 10, as desired.

Since either way we get a < 10, we know that a < 10, as desired.



# Chapter 5

Exercises 5.6, 5.17, 5.26

## Exercises 5.6

#H## 1)

Suppose A and B are sets. Show that if ¢ € A n B, then c € A.

Let c € A n B.
Then ¢ € A and c € B.
In particular, c € A.

#i# 2)

Suppose X, Y, and Z are sets.
Show that if r€ (X nY) u (X n Z), then r € X.

Let r € (XnY)u((Xn2Z2).
Then r € XnYorr€Xn Z.
(Case 1) Suppose r € X n Y.
Then r € X and r €
In particular, r €
(Case 2) Suppose r € X n Z.
Then r € X and r €
In particular, r €
In either case, we have r €

x <

X X N

as desired.
## Exercise 5.17

Suppose A and B are sets.
Show that if c € A" n B", then c € (A u B)".

Let c € A" n B,

Then ¢ € A" and c € B’.

That is, ¢ € A and c ¢ B.
Symbolically, -(c € A) & —=(c € B).
DeMorgan's gives -(c € A v c € B).
This is equiv. to -(c € A u B),
which is to say ¢ € (A u B)".

## Exercises 5.26

### 1) Describe each of the following sets by listing its elements.

(a) P(e) = {o}

(b) P({a}) = {e, {a}}

(C) ?({ar b}) = {@r {a}r {b}r {a; b}}
(d) »({a, b, c})



{e, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
({a, b, c, d})

{2, {a}, {b}, {c}, {d},

‘{a, b}, {a; C}; {a; d}l

{b, c}, {b, d}, {c, d},

{a, b, c}, {a, b, d},

{a, ¢, d}, {b, ¢, d},

{a, b, c, d}}

(e)

<1

### 2) Which are elements of P({a, b, c})?

(a) a ¢ P({a, b, c})

(b) {a} € P({a, b, c})

(c) {a, b} € P({a, b, c})

### 3) Suppose A is a set.

(a) Is @ € P(A)? Why?
Yes, because @ c A,

(b) Is A € P(A)? Why?
Yes, because A c A.

### 4) Does there exist a set A, such that P(A) = @?
No matter what set A is, it's always the fact that @ c A, so we

always
have at least @ € P(A), so P(A) can never be empty.

### 5) Let V.O = o
V_1=P(V_0)
V.2 = P(V_1)

and so forth.
(a) What are the cardinalities of V_0, V_1, V_2, V_3, V_4, and V_57?

#(V_0)
#(V_1)
#(V_2)
#(V_3)
#(V_4)

0
1
2
4
2/\
#(V_5) 2°

4 =16
16 = 65536

(b) List the elements of V_0, V_1, V_2, and V_3.

[7)]
{o}
{e, {o}}

<< <
NP
i nn



V_3 = {e, {e}, {{e}}, {o, {2}}}
(c) List the elements of V_4.
V.4 ={

zl

{o},

{{e}},

{{{e}}},

{{e, {o}}},

{{e}, {{2}}},

{{e}, {{{2}}}},

{{e}, {{e, {o}}}},

{{{e}}, {{{2}}}},

{{{2}}, {{e, {e}}}},

{{{{e}}}, {{e, {o}}}},

{2, {2}, {{e}},

{2, {2}, {2, {o}}},

{e, {{e}}, {2, {2}}},

{{e}, {{e}}, {o, {o}}},
, {2, {2}, {{2}}, {2, {2}}}

(d) Is it reasonable to ask someone to list the elements of V_5? Why?

Hell no! It's just too many elements. And it's really confusing (See

V_4 above. How much more confusing would V_5 be?!). It'd actually
take

more than a few minutes for a computer to work it out, even. This is

the kind of thing that you need to describe by its characteristics
and

features, because you can't really describe it by just saying what
it

is.



# Chapter 6
Exercises 6.10, 6.14, 6.15, 6.24
## Exercises 6.10

Using the given symbolization key, translate each English-language
assertion into First-Order Logic.

U : The set of all people

: The set of all ballet dancers.
: The set of all females.

: The set of all males.

: X is a child of vy.

: X is a sibling of vy.

: Elmer

: Jane

i Patrick

X X
(2N @]
T ODPI<K<K 2O

### 1) Everyone who dances ballet is the child of someone who dances
ballet.

vxebD,3yeD, xCy

### 2) Every man who dances ballet is the child of someone who dances
ballet.

Vx€eDnM, 3yebD, xCy
### 3) Everyone who dances ballet has a sister who also dances ballet.
VxeD, IyeEDNF, xSy
### 4) Jane is an aunt.
jEeEF&3I X, Ty, xCy &y S j
### 5) Patrick's brothers have no children.
VXEM xSp=(-3y, ycCx)
## Exercises 6.14
Negate each of the following assertions of First-Order Logic (and
simplify, so that - is not applied to anything but predicates or
assertion variables.)

### 1) (L--M) & (M Vv N)

- ((L=-=-M) & (MVvN))



=-(L=>-M)v-(MVN)

= (-L&M) vV (-M&-N)

### 2) ((a € A) & (b €EB)) Vv (c €C)

- (((a €A) & (b€EB)) v (c €C))

=- ((a€A) &(b€EB)) &- (c €C)

= (- (a€A) v-(b€eB)) &- (c €()

= (a¢AvDbé&B) &cé¢cC

### 3) Ya €A, (((a€P)v(a€eqQ)&(aé¢R))
- (Va€eA (((a€eP)vi(a€enqQ))&(a¢gR)))
=3a€A - (((a€P)v(aeqQ))&(aég¢Rr))
=3ac€A (-((@a€eP)v(aeq)v-(aéR))
=3ac€cA ((-(a€eP)&-(a€Q))vac€eR)
=3 a€EA ((agP&aé¢Q) vac€ER)

### 4) YVa€A ((@a€T)=>3c€eC, ((c€Q) & (cRa))

- (Va€eA ((@a€T)=3ce€eC, ((ceQ) &(cRa)
=3a€A - ((a€T)=>3ceC, ((ceQ) & (cRa)
=3 a€A ((a€T)&-3ce€eC, ((ceQ) & (cRa)
=3a€A ((a€T)&YCcEC - ((c€Q) & (cRa)
=3 a€A ((a€T)&VYVcEC (-(c€Q) v-I(cRa))
=3 a€A ((a€T)&VYVcEC (cgQv-(cRa))
### 5) Vx, ((x€A) &(F1TEL, ((xB1) v (LECO)))
-Vx, ((x€EA) &A1TEL, ((xB1) v (LECQ))
=3 x, -~ ((x€EA) &(ILEL, ((xB1L) v (LECQO))
=3x, (-(x€A) v=-(3I1LEL, ((xB1) v (LECOC)))
=3x, (xgA) v (V1EL, = ((xB1 Vv I(LECQO)))
=3 x, ((xgA) vV1IEL, (=(xB1 &(1L¢&C0))))

##

H

6) A- ((Ix€X, (xEB)) v (Ve€eE, 3d€eED, (eCd)))

(A= ((3 x€eX, (x €B))
A&- ((3 x €X, (x €B)
A& (- (3 x €X, (x €B)
A& (VW x€eEX, x¢B) & (

e €EE, 3de€eD, (e Cd)
D, (eCd
C

)
€ )
d € D, (e
= (

))
))
d)))

nm m 1

### 7) Va €A IDbDEB, IcEC,VAdED, (aKb) &((azc)v (b>
d))
Va€A Ib€eEB, IceEC,VAdED, (aKb) & ((azc)v (b>d))
Ja€A VYVbEB, YcEC IdED, - ((aKhb)&((azc)v(b>

=3a€A VbEB,VceEC, I3deED, ~(aKb)v-((azc)v (b>



Ja€eA VbeB, VceC(C 3d
)

o

)

>
## Exercises 6.15

Simplify each assertion. Show your

### 1) - Va€eA (a€P)v (a€EN
-Ya€eA (a€P)v (a€Nq)
=3a€A - ((a€eP)v (a€n))
=3 a€A -(a€EP)&-(ac€Nq)
=3Ja€EA a¢P&a¢q

### 2) -3 a €A (a€P)&(a€N
-3 a€A aeP&acQq
=Va€EA -(a€eP&acnq)
=Va€eA a¢Pvategnq

###t 3) -V x€eX, 3y €Y, ((x €A
-Vx€eX,Iyey, ((x €A &
=3 x€EX, VYy€ey, - ((x €A &
=3I xXEX, VYEY, xXEAV - (x

### 4) - Vs €S, ((s€R)= (3t
- VsES, ((s€R)=(3IteT,
=3I xXx€ES, ~((s€R)=(FteT
=3x€S, ((s€eR)&-(FteT
=3 x€ES, ((seR)&(VtEeT,
=3 x€ES, ((seR)&((VtEeET,
=3 x€ES, ((seR)&((VtET,

## Exercises 6.24

Explain how you know that each of

valid.

### 1) 3 x,
1 x,
<34 X,

(x € A)
(x € B)
((x € A) & (x €B))

€ED, ~(aKb)v(=(azZc) &= (b

work!

)

)

) & (x Cy))
x Cy))

(x Cy))

Cy)
ET, ((s=#1) &(sMt))))
((s#t) & (sMt))))

, ((s#t) & (sMt))))

, ((s#1t) & (sMt))))
- ((s#t) & (sMt))))
(= (sz2t) v-(sMt))))
((s=1t) v-o(sMt))))

the following deductions is not

This deduction is invalid because we can easily think of a situation

in
which the hypotheses are true but
instance,

the conclusion is false. For

let u = {1, 2}, let A = {1}, and let B = {2}. In this model, the

hypotheses are both true, but the

conclusion is false.



### 2) Ya €A, I b€eEB, (a#b)
A#zo
~Ybe€B, Iac€A (a=zhbh)

Let's think of a model in which the hypotheses are true but the
conclusion is false. Let u = {1, 2}, let A = {1}, and let B = {1, 2}.
Then Hypothesis 1 is true because if a = 1, then b = 2, and that
covers

every element of A. Hypothesis 2 is true because 1 € A. But the
conclusion fails because if we let b = 1, then there's no a € A such

that a # 1.

### 3) A # B
S~AuB=A

Let's think. We want the conclusion to be false, so we want A u B to
be

A. If B were a subset of A, then A u B would be A, as desired. Let's
draw up a formal counterexample: Let U = {1, 2}. Let A = {1, 2}. Let
B = {1}. Then A # B, but A u B = A, so the deduction is not valid.
### 4) YV x €A, (x ¢ B)
V X €EB, (x &€ A)
A #B

This one is a little tricky. In words, Hypotheses 1 and 2 together say
that the sets A and B must not have any elements in common. The
conclusion then states that A and B must be different sets. The
conclusion seems reasonable, but then we're forgetting something.
Perhaps A and B are both the empty set. Then they would have no
elements in common, yet they would both be the same set (i.e., the
empty

set). Let's make our counterexample: Let U = {1}, let A = B = @. Then
it is true (vacuously) that V x € A, x ¢ B, and similarly it is true
(vacuously) that V x € B, x € B, and yet we still have A = B, so the
deduction is invalid.



# Chapter 7

Exercises 7.21, 7.22, 7.23
## Exercises 7.21

Suppose A and B are sets.
### 1) Show A\ B = A n B’

Let x € A\ B, so x € A and x ¢ B.

Since x € B, we have x € B’.

Thus, since x € A and x € B, we have x € A n B’.
This shows that V¥ x € A\ B, x € AnB’,

which just means A\ B c An B’".

Now, let x €E An B, so x € Aand x € B".

Since x € B’, we have x €& B.

Thus, since x € A and x ¢ B, we have x € A \ B.
This shows that V x € A n B’ € A\ B,

which just means A n B” c A

Since both A\ Bc An B’ a
we must have that A\ B = A

### 2) Show A = (A \ B) u (A n B)

(We will prove this equation with a slightly different method than
what
was employed above. We will prove this equation by showing that
the
predicate for being a member of the RHS (right-hand side) is
logically
equivalent to the predicate '"x € A".)

Let x € U.

x €E(A\NB) u(AnB)=x€ (A\B)vxE€(AnB)
= (X EA&XEB) v(XEAG&XEB)
= (x EA) & (x ¢ Bv x €B)
= (x EA)&T
=X EA

Thus, V x, x € (A\ B) u (AnB) « x €A,

so (A\B) u (AnB) =A.

(Notes:

— We have (x € Bv x € B) =T because (x ¢ Bv x € B) is a
tautology.

- We have (x € A) & T = x € A because P & T = P for any assertion



P.
- The algebra shows x € (A \ B) u (A n B) = x € A, but then we go

on
to say x € (A\ B) u (AnB) « x € A. To do this, we have to
recall one of the most important concepts from Propositional
Logic: the idea that P = Q means that P « Q is a tautology.
-V Xx, Xx€Xe Xx €Y says that the two sets X and Y have exactly
the
same elements, in which case, they must actually be the same
set.
- We can, if we want to, solve this problem using the method we
used
on the first problem, i.e. show that the sets are subsets of
each

other. We took a different approach so that you could see
examples

of both methods.)
### 3) Prove De Morgan's Laws:

#### (a) (A7) = A

Let x € U.

X E(A) =x ¢ A
=- (x €EA")
= - (X € A)
= - (= X €EA)
=X €A

Thus V x, Xx € (A")” o x € A,
so we have (A")’ = A.

#### (b) (AnB) =A" uB’

(We'll use the method where we show that the LHS and RHS are subsets
of each other.)

(w.t.s. LHS c RHS)

Let x € (AnB), sox € An B,

so it is not the case that x € A & x € B,
which means that x € A v x ¢ B,

which is to say that x € A" v x € B,

so Xx € A" uB’.

This shows that V¥ x € (AnB)’, x €EA” U B,
which is to say (An B)" c A" u B".

(w.t.s. RHS c LHS
Let x € A’

)
UB, sox EA” v x € B,
so x ¢ Av x ¢ B,



which means that it is not the case that x € A & x € B,
so it is not the case that x € A n B,

which is to say that x ¢ A n B, that is x € (A n B)".
This shows that ¥V x € A uB’, x € (AnB)’,
which is to say A uB” < (A n B)".

Finally, since the two sets are subsets of each other, they must
actually be the same set, thus (AnB)" = A" u B’.

#### (¢) (AuB) =A" nB’

(We'll use the method where we show that membership in the LHS is
logically equivalent to membership in the RHS.)

Let x € U.

X €E(AuB) =x¢ (Au B)
= - (x € AuB)
=- (x EA v X €EB)
= - (x €EA) & - (x € B)
= (x ¢ A) & (x ¢ B)
= (x €EA") & (x €B")
=X €A nB

This shows that V x, x € (AuB)" « x € A" nB’,
which is to say (A u B)” = A" n B’

### 4) Show that if A = B, then A = B
(We want to prove an "if ... then ..." statement, so we assume the
antecedent, and then it's our job to show the consequent.)

Assume A” = B’.
We want to show that A = B.

(Now, we want to show that two sets are equal. We can do this by
showing that they are subsets of each other. To do this, we'll
at some point need to use the thing we assumed [i.e. A" = B'],
so try to watch for where it might be useful.)

(wet.s. A c B)

Let x € A.

We want to show that x € B.

Since x € A, we know x ¢ A’. (Here we used DM's(a): A"" = A.)
Since A = B’, we know x & B’.

Since x € B, we know x € B.

Since letting x € A resulted in having x € B,
we have shown that V x € A, x € B,

which is to say that A c B.



(w.t.s. B c A)

Let x € B.

We want to show that x € A.

Since x € B, we know x & B". (Again, this is where we used DM's(a).)
Since A = B, we know x & A’".

Since x € A", we know x € A.

Since letting x € B resulted in having x € A,

we have shown that V x € B, x € A,

which is to say that B c A.

Since A c B and B c A, we have A = B, as desired.
## Exercises 7.22
Suppose A, B, and C are sets.
(Notes: to say that two sets X and Y are disjoint is the same as
saying
XnY =, We will make use of this fact time and time again in these
exercises.)

### 1) Show that A is disjoint from B if and only if A c B’

We need to show that An B =2 « A cB’.

(w.t.s. AnB=2=>AcB’)
Let AnB = a.

We want to show that A c B’.
Let x € A.

Since A n B = @, we know that there are no elements that are in both
sets.

Symbolically, that is - 3 x, x € A & x € B.

This is equivalent to V x, - (x E A& X € B

which in turn is equiv. to V x, x ¢ A v x ¢
which is equiv. to V x, x € A = x ¢ B.
Since x € A, we can conclude that x & B.
Since x ¢ B, we have x € B".

So far, we've shown that V x € A, x € B,
which is to say A c B’.

Thus, AnB =2 = AcB’.

)
B,

(w.t.s. Ac B = AnB=9)

Let Ac B, soV x €A, x €B".

We want to show that A n B = @.

Assume for contradiction that there is an x € U that is in A n B.
Then x € A and x € B.

Since x € A and A c B, we'd have x € B", which means x €& B.

But earlier we said x € B, so this is a contradiction.

So, so far we have = 3 x, X € A n B.

This is the same as V x, x € A n B,



so A n B has no elements, so A n B = @.
Thus, Ac B = AnB = a.

(Bring it all together)
Since AnB =2 = AcB” and A c
we conclude that AnB =2 « A c

"= AnB=g,

o O

### 2) Show A \ B is disjoint from B

We want to show that (A \ B) n B = a.
We will use proof by contradiction.

Assume for contradiction that (A \ B) n B # &.

Then, 3 x, x € (A \ B) n B, so let's call it a.

We have a € (A\ B) nB, soa € A\ B and a € B.

Since a € A\ B, we have a € A and a ¢ B.

But earlier we said a € B, so this is a contradiction,
so our assumption must be wrong.

Thus (A \ B) n B = a.

### 3) Show that if A is disjoint from B, and C is a subset of B, then
A is disjoint from C

(We want to show that if:

AnB-=ga, and
C c B,

then
AnC-=wgo,

As always, we get to assume the hypotheses and it's our job to

then
show the conclusion.)

Let AnB = and let C c B.
(w.t.s. AnC=9)
Since An B =9, we know = 3 x, X € A n
or in other words, V x, Xx € A = x ¢ B (
line).
Assume for contradiction that An C# o, so 3 x, Xx € An C.
Let's take one such individual and call it a, so that a € A n C.
We have a € A and a € C.
Since a € Aand V x, x €E A= x ¢ B, we get a ¢ B.
Since a € C and C c B, we get a € B.
This is a contradiction, so our assumption must be wrong.
Thus A n C = a.

B,
simplification of above

### 4) Show that A \ B is disjoint from A n B

We want to show that (A \ B) n (A nB) = @.
We will use proof by contradiction.



Assume for contradiction that (A \ B) n (A n B) # @.

Then 3 x, x € (A\ B) n (A n B).

Take one such individual and call it a, so a € (A \ B) n (A n B).
We have a € A\ B and a € A n B.

Since a € A\ B, a € A and a ¢ B, in particular a ¢ B.

Since a € AnB, a € Aand a € B, in particular a € B.

This is a contradiction, so our assumption must be wrong.

Thus (A \ B) n (A n B) = @.

### 5) Show that A is disjoint from B u C iff A is disjoint from both
B and C

We want to show An (BuCC) =2« (AnB=2&AnC=2a).

(w.t.s. An(BuC)=2=>(AnB=a2&AnC=2))
Let An (BuC) =a.
(w.t.s AnNB=2&AnC =2)
Assume for contradiction = (An B =2 & A n
This simplifies to - (An B =) v - (AnC
which simplifies to (An B # @) v (An C = @),
which translates to (3 x, x E AnB) v (3 x, x€An C).
We proceed in cases:
(case 1) Assume 3 x, x € A n B.
Then we can pick one, call it a, so that a € A n B.
We have a € A and a € B.
Since a € B, we have a € B u C.
Since a € A and a € Bu C, we have a € An (Bu (),
So, 3x, x€An (BuOC)),
or in other words, A n (B u C) # &,
which contradicts our initial premise.
(case 2) Assume 3 x, X € A n C.
Then we can pick one, call it a, so that a € A n C.
We have a € A and a € C.
Since a € C, we have a € B u C.
Since a € Aand a € Bu C, we have a € An (Bu (),
So, 3 x, xXE€EAn (BuO)),
or in other words, A n (B u C) # &,
which contradicts our initial premise.
Since we get a contradiction in either case, we see that it is
impossible for = (An B =2 & An C = 2) to be true,
thus we know AnB =2 & An C = o,

= a).
2),

— 1 O

(w.t.s. (ANB=2&AnC=92) =An (BuC) =92)

Let AnB=2 &AnC .

We translate this as (-3 x, x EAnB) & (-3 x, x€AnC),
which simplifies to (V x €A, x ¢ B) & (V x €A, x ¢ C).
(w.t.s. An (BuC) =92)

(w.t.s. =3 x, x€EAN (BuCQ))

(w.t.s. VX €A, x € BuC, we will use VY-intro)

Let x € A.

11



Then x ¢ B and x ¢ C.

This is equivalent to - (x € B v x € (),

which is equivalent to - (x € B u C), or rather x ¢ B u C.
Since we started with a general element of A,

we conclude that V x € A, x € B u C, as desired.

(Bring it all together)

Since both An (B u C) = = (AnNB=29 &AnC-=2)
and (AnB=2&AnC-= ) = An (BuC) =g,
we've shown An (BuC) =2« (AnNB=2g&AnC=9)

## Exercises 7.23
### 1) Show AuB = (A\B) u (B\A)u (AnB)

AuB={x | x € Av x € B}.
(A \ B) U (B\NA) u(AnB) ={x | xEA\NBVXEB\NAVXEA
B}.

Let x € A u B.
Then x € A or x € B.
(case 1) Assume x € A.

We know x € B or x ¢ B.
(case la) Assume x € B.
Then x € AnB, sox € (A\B) u (B\A) u (A
B).
(case 1b) Assume x ¢ B.
Then x € A\ B, so x € (A\B) u (B\ A) u (A
B)l
(case 2) Assume x € B.
We know x € A or x & A.
(case 2a) Assume x € A.
Then x € AnB, sox € (A\B) u (B\A)u (A
B)l
(case 2b) Assume x ¢ A.
Then x € B\ A, so x € (A\ B) u (B\ A) u (A
B)l
Since x is a general element of A u B,
we've shown that V x E AuB, x€ (A\B) u (B\A)u (AnB),
which is to say that AuB c (A\ B) u (B\A) u (AnB).
Let x € (A\ B) u (B\ A) u (A n B).
Then x € A\ Bor x € B\ Aor x € An B.
(case 1) Assume x € A \ B.
Then x € A and x & B.
Since x € A, we get x € A U B.

(case 2) Assume x € B \ A.

Then x € B and x ¢ A.

Since x € B, we get x € A U B.
(case 3) Assume x € A n B.



Then x € A and x € B.

In particular, x € A, so x € A U B.
Since x is a general element of (A \ B) u (B \ A) u (A n B),
we've shown that V x € (A\ B) u (B\ A) u (AnB), X € AuB,
or in other words (A \ B) u (B \ A) u (AnB) c Au B.

Since both AuBc (A\NB) u(B\ A) u (AnB)
and (A\ B) u (B\A) u (AnB) cAuB,
we have that Au B = (A \ B) u (B\ A) u (A n B)

### 2) Show the three sets A\ B, B\ A, and A n B are all disjoint
from each other

We need to show three things:

- (A\NB) n(B\A) =2
-(A\B) n(AnB) =2
- (B\NA) n(AnB) =2

Each of them we will prove by contradiction.

(w.t.s. (AN B) n (B\ A) =2)
Assume for contradiction that (A \ B
in other words, 3 x, x € (A \ B) n (
We pick one such x and call it a,
soa€ (A\B)n (B\A).

We have a € A\ B and a € B \ A,
soa€Aand aé¢Banda€Bandaé¢A.

Well, this is a contradiction if I've ever seen one,
so we conclude that (A \ B) n (B \ A) = @.

) n (B\ A) # g2,
B\ A).

(w.t.s. (AN B) n (AnB) = 2)
Assume for contradiction that (A \ B
in other words, 3 x, x € (A \ B) n (
We pick on such x and call it a,
soa€ (A\N\B)n (AnB).

We have a € A\ Band a € A n B,

so a €A and a € Band a € A and a € B.

We see that a € B and a € B, a contradiction,
so we conclude that (A \ B) n (A n B) =

(w.t.s. (B\ A) n (AnB) =9)

Assume for contradiction that (B \ A) n (A n B) # g,
in other words, 3 x, x € (B \ A) n (A n B).

We pick one such x and call it a,

soa€ (B\A) n(AnB).

We have a € B\ A and a € A n B,

so a€Band aé¢ Aand a € A and a € B.

We see that a € A and a € A, a contradiction,

so we conclude that (B \ A) n (A n B) =



# Chapter 9

Exercises 9.98, 9.100, 9.104, 9.109, 9.110, 9.111

## Exercises 9.98

Let f : A-Band g : B » C.

### 1) Show that if f and g are bijections, then g o f is a bijection.

Let f and g be bijections, so we know that

VbeB, 31 a€A, f(a) =bandVc€C, 3! b €B, glb)

(w.t.s. Vc€C, 3l a €A, (go f)(a) =c)

Let ¢ € C.

Since g is a bijection, there is a unique guy b, with b € B and g(b)
= C.

And, since f is a bijection, there is a unique guy a, with a € A and
f(a) = b.

We have that (g o f)(a) = g(f(a)) = g(b) = ¢, so g o f is at least
onto.

We still need to show that a is unique (i.e., that g o f is 1-to-1).

Assume that there is another guy a_2 € A with (g o f)(a_2) = c.

Then g(f(a_2)) = c = g(f(a)), so g(f(a_2)) = g(f(a)).

Since g is 1-to-1, we get f(a_2) = f(a),

and since f is 1-to-1, we get a_2 = a,

so g o f is 1-to-1.

Since f is both onto and 1-to-1, f is a bijection.

Il
0

### 2) Show that if g and g o f are bijections, then f is a bijection.

Let g and g o f be bijections, so we know that

VcecC, 3' beB, glb) =candVceC 3! ac€eA (geo f)(a) =c.

(w.t.s. YV b €B, 3! a €A, f(a) =0b)

Let b € B. (w.t.s. 3! a € A, f(a) = b)

We have g(b) € C.

Since g o f is a bijection, we get a unique a € A where (g o f)(a) =
g(b).

This is the same as saying g(f(a)) = g(b).

Since g is 1-to-1, we have f(a) = b, which shows that f is onto.

We still need to show that f is 1-to-1.

Assume that we have a_2 € A where f(a_2) = b. (w.t.s. a_2 = a)

Assume that a_2 # a. (w.t.f. a contradiction)

Since g o f is a bijection, (g o f)(a_2) # (g o f)(a),

which is the same as saying g(f(a_2)) # g(f(a)).

Since g is a bijection, this gives f(a_2) # f(a),

but earlier we had f(a) = b and f(a_2) = b, so b #b, a
contradiction.

Thus a_2 = a, so f is 1-to-1.

Since f is both onto and 1-to-1, f is a bijection.



### 3) Show that if f and g are bijections, then (g o f)-* = f-1 o g1

We want to show that two functions are the same.
To do this, we can try to show that they do the same thing to points
in C.

C - A.
f-1 o gt : C- A.
Let ¢ € C. (w.t.s. (g o f)-2(c) = (f-* o g=*)(c))
(f-* o g=t)(c) = f-*(g-*(c)).
g-*(c) is the unique b € B with g(b) = c.
f-1(g-*(c)) = f-1(b), and f-1(b) is the unique a € A with f(a)
(g o f)-*(c) is the unique a_2 € A with (g - f)(a_2) =
So we have f-1(g-*(c)) = a and (g o f)-*(c) = a_2. (w.t.s. a_2 = a)
Assume for contradiction that a_2 = a.
Take f of both sides. We get f(a_2) = f(a) since f is a bijection.
Take g of both sides. We get g(f(a_2)) # g(f(a)) since g is a

bijection.

Now, earlier we said g(f(a_2)) = c.
Also, we said f(a) = b and that g(b) = ¢, so g(f(a))
But then this gives ¢ # ¢, a contradiction, so a_2 =
So we have V ¢ € C, (g o f)-2(c) = (f-2 o g-1)(c),
so (g o f)-1 = f-1 o g-1.

b.

a.

## Exercises 9.100

### 1) Give an example of functions f : A - B and g : B » C such
that g o f is onto, but f is not onto.
Let g : R —> [0, ») by g(x) = |x].
Let f : R —> R by f(x) =
Then g o f : R » [0, «).
(g o f)(x) = |x*2| = x*2, since x"2 is positive.
And g o f is onto because x*2 hits every non-negative real.

X)
X 2

### 2) Define f : [0, ») > R by f(x) =x and g : R » R by g(x) = |x].
Show that g o f is one-to-one, but g it not one-to-one.

Pt 1: (w.t.s. g o f is one-to-one)
Let x_1, x_ 2 € [0, ). (w.t.s. (g o f)(x_1) = (g o f)(x_2) =
x_1 = x_2)
Assume x_1 # x_2. (w.t.s. (g o f)(x_1) # (g o f)(x_2))
g(f(x_1)) = X 1, since x_1 is non-negative.
g(f(x_2)) |x 2| = since x_2 is non-negative.
So, g(f(x_1)) # g(f (x 2))
Thus, g o f is one-to-one.
Pt 2: (w.t.s. g is not one-to-one)
Consider -1 € R and 1 € R.
g(-1) =1 =g9(1).
So, g is not one-to-one.

T
;Z
'—\



### 3) Suppose f : A-Band g : B - C. Write a definition of g o f
purely in terms of sets of ordered pairs.

(a, c) €Eg o fec=g(f(a))
« (f(a), c) €g
«31b€B, b="f(a) & (b, c) €g¢g
31 b€ B (a, b) € f & (b, c) €g
sogeo f={(a, c) EAxC| 3IbeB, (a, b) € f& (b, c) € g}

## Exercises 9.104

Assume f : A - B.
Let A1, A 2 c A.

### 1) Show A 2 c A1 - f(A_2) ¢ f(A_1)

Assume A_2 c A_1. (w.t.s f(A_2) c f(A_1))
( )

Let b € f(A_2). (w.t.s. b € f(A_1))

Since b € f(A_2), there is an a € A_2 where f(a) = b.
Since A2 c A1, a € A_1.

Since a € A_1l, we have f(a) € f(A_ 1),

and f(a) = b, so b € f(A_1).

Thus f(A_2) c f(A_1).

### 2) Assume f is 1-to-1 and a € A.
Show that if f(a) € f(A_1), then a € A_1.

Assume f(a) € f(A_1). (w.t.s. a € A_1)
Since f(a) € f(A_1), there is an a_2 € A_1 where f(a_2) = f(a).
Since f is 1-to-1, we get a_2 = a, so a € A_1 as desired.

## Exercises 9.109

Suppose that f : A - B, that A_1 c A, and that B_1 < B.

### 1) Show that if B_2 < B_1, then f-1(B_2) c f-1(B_1).
Assume B_2 c B_1. (w.t.s. f-1(
Let a € f-1(B_2). (w.t.s. a €
Since a € f-1(B_2), we get f(a

Since B_2 c B_1, we get f(a) € B_1.

Since f(a) € B_1 we get a € f- 1(B_1).
Thus, f-1(B_2) c f-1(B_1).

) ¢ f-1(B_1))
( 1))

B_2
f-1
) € B_2.

### 2) Show A_1 c f-1(f(A_1)).
1(f(A_1)))

f
) € f(A_1).
et a € f-1(f(A_1)), as desired.

Let a € A_1. (w.t.s. a €
Since a € A_1, we get f(a
Since f(a) € f(A_1), we g
Thus A1 c f-1(f(A_1)).



## Exercises 9.110

Assume f

Pt 1:

Pt 2:

: X->Y, AcY, and B c Y.
Show f-*(A) n f-*(B) = f-1(A n B).

(w.t.s.
Let x € f-1(A) n f-1(B). (w.t.s x € f-1(A n B))
Then x € f-1(A) and x € f-1(B).

Then f(x) € A and f(x) € B.

Then f(x) € A n B.

Then x € f-1(A n B), as desired.

f-1(A) n f-1(B) ¢ f-1(A n B).

Thus

(w.t.s.
Let x € f-*(A n B). (w.t.s. x € f-2(A) n f-1(B))
Then f(x) € A n B.

Then f(x) € A and f(x) € B.

Then x € f-1(A) and x € f-1(B).

Then x € f-1(A) n f-1(B), as desired.

f-1(A nB) c¢c f-1(A) n f-1(B).

Thus f-*(A) n f-*(B) = f-*(A n B).

Thus

f-1(A) n f-*(B) ¢ f-*(A n B))

f-1(AnB) c f-*(A) n f-%(B))

## Exercises 9.111

Assume f :

X-Y, g:Y=>2Z X1cX, Z1c2Z and (g o f)(X_ 1) c Z 1.

Show f(X_1) c g-1(Z_1).

(w.t.s. y € g-2(Z_1))
1), we have an x € X_1 where f(x) =y.
we have (g o f)(x) € (g o f)(X_1).
X_1) < Z_1, we have (g o f)(x) € Z_1.
x) = g(f(x)), we have g(f(x)) € Z_1.
, we have g(y) € Z_1.
1, we have y € g-*(Z_1), as desired.



# Chapter 10

Exercises 10.19, 10.27, 10.32, 10.47, 10.54

## Exercises 10.19

Suppose A and B are finite sets, and m, n € N. Prove:

### 1) If m < n, then there exists a one-to-one function
f: {1, 2, ..., m}y-{1, 2, ..., n}.

Let m = n.

(w.t.f. £ : {1, 2, ..., m} - {1, 2, ..., n} s.t. f is 1-to-1)

Define f : {1, 2, ..., m} - {1, 2, ..., n} by f(i) = i.
We need to show that f is one-to-one.

(wet.s. V x_1, x_2 € Dom(f), f(x_1) = f(x_2) = x_1 = x_2)
Let x_ 1, x 2 € {1, 2, ..., m}.

Assume f(x_1) = f(x_2).

The formula for f says f(x_1) = x_1 and f(x_2) = x_2,

so x_1 = x_2.

Thus, f is one-to-one, as desired.

#i## 2) If #A < #B, then there exists a one-to-one function f :

Since #A = m, there is a bijection j : A - {1, ..., m}.

Let #A = m. Let #B = n. Then m = n.
Since #B = n, there is a bijection k : B - {1, ..., n}.

A - B.

From above problem, let g : {1, ..., m} - {1, ..., n} be 1-to-1.

Set f = k' o g o j.

Then f : A - B, as desired,

and since f is a composition of 1-to-1 functions,
f is 1-to-1, as desired.

### 3) If m = n, then there exists an onto function
f: {1, 2, ..., m}y- {1, 2, ..., nt.

Let m = n.

(w.t.f. £ : {1, 2, ..., m}y-A{1, 2, ..., n} s.t. f is onto)

Define f : {1, 2, ..., m} - {1, 2, ..., n} piecewise by
f(i) ={ i, if i = n
{1, if 1 > n

We need to show that f is onto.

(w.t.s. ¥V y € Codom(f), 3 x € Dom(f), f(x) =y)
Let y € {1, 2, ..., n}.

(w.t.f. x € {1, 2, ..., m} s.t. f(x) =vy)

Sincey € {1, 2, «+., N}, y=sns=m soy€A{1, 2, ..., m}.
Then, f(y) makes sense (since y € {1, 2, ..., m}) and f(y)

Thus, f is onto.



### 4) If A and B are nonempty, and #A = #B, then there exists an onto
function f : A - B.

Let #A = m, so there is a bijection j : A - {1, ..., m}.

Let #B = n, so there is a bijection k : B - {1, ..., n}.

Since #A = #B, we have m = n.

Since m = n, we get an onto function g : {1, ..., m} - {1, ..., n}.

Set f = k™! o g o j.

Then f : A - B as desired,

and since f is a composition of onto functions,
f is onto, as desired.

## Exercises 10.27

### 1) Show that #A is well-defined.

Say #A = m, so there is a bijection k : A - {1, ..., m}.
Say #A = n, so there is a bijection j : A - {1, ..., n}.
Then k o j-* is a bijection from {1, ..., n} to {1, ..., m},

so #{1, ..., n} = #{1, ..., m},
which would mean n = m.

### 2) Show N is infinite.

(w.t.s. =3 n €N, #\ = n)

Assume for contradiction that there is an n € N s.t. n = #N.
Then there is a bijection f : N - {1, ..., n}.

In particular, f is 1-to-1.

Now, consider the set {1, .., n, n+l} c N.

Since f is 1-to-1, each x € {1, ..., n, n+l}

must map to a different value in Codom(f).

But Codom(f) = {1, ..., n}.

By pigeonhole principle, there must be at least two

x € {1, ..., n, n+l} that f maps to the same value.

This contradicts the earlier statement that f is 1-to-1,
so our original assumption must be false.

Thus there is no n € N s.t. n = #\.

### 3) There are twelve people in a skating rink, playing ice hockey.
Explain how you know that two of them were born on the same day
of the week.

Pick seven of those 12 people. If two of those seven were born on
the

same day of the week, then we win. If, on the other hand, none of

those seven were born on the same day of the week, then just pick
one

more person from the remaining 5; since there are only seven days in

the week, the eighth person will share with one of the seven we



already picked, so we win either way.

### 4) If there are 700 students in a high school, explain how you
know
that there are two of them with the same initials.

There are 26 * 26 = 676 possible initials.
Since there are 700 students and only 676 possible initials,
there must be at least two students with the same initials.

### 5) Suppose A is a set of 1@ natural numbers between 1 and 100
(inclusive). Show that two different subsets of A have the same
sum.

There are 2710 = 1024 subsets of a 10-element set.
The maximum possible sum is 100 + 99 + ... + 92 + 91
and the minimum possible sum is 1 + 2 + ... + 9 + 10
so there are 900 possible sums.

Since there 1024 subsets and only 900 possible sums,
there are at least two subsets that have the same sum.

955,
55,

## Exercises 10.32

### 1) Suppose A and B are subsets of a finite set C. Show that if
#A + #B > #C, then A n B # @.

Let #A + #B > #C.

Assume for contradiction A n B = @.

Then #(A n B) = 0.

Since Ac C and B c C, we know A u B c C,

so #(A u B) = #C.

Now, #C = #(A u B) = #A + #B - #(A n B) = #A + #B.

Thus, #A + #B =< #C.

But this contradicts our hypothesis, so our assumption must be
wrong.

Therefore, A n B # @.

### 2) Show that if A is a set of at least 600 natural numbers that
are
less than 1000, then two of the numbers in A differ by exactly
100.

Let B = {a + 100 | a € A}.

Let C = {1, ..., 1100}.

Then A c C and B c C.

#A = 600, #B = 600, and #C = 1100,

so #A + #B > #C.

Thus, by the above problem, A n B # @.
Take x € An B, so x € A and x € B.
Since x € B, x = a + 100 for some a € A.



Thus we have x, a € A with x - a = 100.
## Exercises 10.47

### 1) Suppose A is countably infinite, and b € A. Show, directly from
the definition, that A u {b} is countably infinite.

Let A be countably infinite, so there is a bijection f : A - N-.

Define g : A u {b} - N* piecewise by
g(x) =41, if x =D
{ f(x) + if x#b

We need to show g is a bijection.
(onto) Let y € N+,

If y = 1, then g(b) =
If y > 1, then 51nce f is onto, y - 1 = f(x) for some x € A,
soy = f(x) +1 = g(x).

Thus, g is onto.
(1-to-1) Let x_1, x 2 € A u {b} with g(x_1) = 2).
If g(x_1) g(x_2) =1, then x_1 = x_ b.
If g(x_1) g(x_2) > 1, then g(x_1) - 1 = g(x_2) - 1.
Now, g(x_1) - 1 = f(x_1), and g(x_2) - 1 = f(x_2),
so the equation become f(x_1) = f(x_2),
and since f is 1-to-1, we have x_1 = x_2.
In either case, we get x_1 = x_2, so g is 1-to-1.
Thus, A u {b} is countably infinite.

g(x_
2 =

(In practice, you would not want to prove this directly from the
definition. Chapter 10 gives some powerful theorems that can prove
this result for us in two or three lines.)

### 2) Suppose A is countably infinite, and a € A. Show, directly from
the definition, that A \ {a} is countably infinite.

Since A is countably infinite, there is a bijection from A to N+,
Let f : A - N* be one such bijection.

Remember, f is a set of ordered pairs.

Find the pair (b, f(b)) € f.

Set g = {(x, f(x)) € f | x # b}

(we're basically deleting the pair (b, f(b)) from f),

sog: A\ {b} - N+,

and we know that g is 1-to-1 since f is 1-to-1,

but we also know that g is not onto, since g doesn't hit f(b).

Here's how we fix that.

Define g_2 : A \ {b} - N* as follows:

If f(x) < f(b), then put (x, f(x)) € g_2.

If f(x) = f(b), then put (x, f(x) - 1) € g_2.



Then, g_2 : A\ {b} - N* is a bijection,
so A\ {b} is countably infinite.

(In practice, you would not want to prove this directly from the
definition. Chapter 10 gives some powerful theorems that can prove
this result for us in two or three lines.)

### 3) Suppose A and B are countably infinite and disjoint. Show,
directly from the definition, that A u B is countably infinite.

A is countably infinite, so there is a bijection f : A - N*.
B is countably infinite, so there is a bijection g : B - N*,

We need to find a bijection from A u B to N*.

Define h : A u B - N* piecewise by
h(x) = { 2f(x), if x € A
{ 29(x) +1, if x € B

(It's important to realize that we're using the fact that A and B
are

disjoint when we define h, because we wouldn't be able to decide
which

formula to use for an element x if it were both in A and in B.)

We need to show h is a bijection.

(1-to-1)

(wet.s. V x_1, x_2 € Dom(h), h(x_1) = h(x_2) = x_1 = x_2)

Let x_1, x_2 € A u B.

Suppose h(x_1) = h(x_2).

For convenience, write n = h(x_1) = h(x_2).

n € N*, so n is either even or odd.

(case 1) If n is even, then n = 2f(x_1) = 2f(x_2) by the def of h.
Then f(x_1) = f(x_2),
and since f is 1-to-1 we get x_1 = x_2.

(case 2) If n is odd, then n = 2g(x_1) + 1 = 2g(x_2) + 1 by def of

Then g(x_1) = g(x_2),
and since g is 1-to-1 we get x_1 = x_2.
In either case x_1 = x_2, so h is 1-to-1.

(onto)
(w.t.s. Y y € Codom(h), 3 x € Dom(h), y = h(x))
Let y € N*.

y is either even or odd.

(case 1) If y is even, then y = 2n for some n.
Since f is onto, pick x € A so that f(x) = n.
Then y = 2f(x) = h(x), as desired.



(case 2) If y is odd, then y = 2n + 1 for some n.
Since g is onto, pick x € B so that g(x) = n.
Then y = 2g(x) + 1 = h(x), as desired.
In either case, we find x € A u B so that h(x) =y, so h is onto.

Thus, h : Au B - N* is a bijection.
Therefore, A u B is countably infinite.

### 4) Suppose
- A_1 is disjoint from B_1,
- A_1 and A_2 have the same cardinality,
- A_2 is disjoint from B_2, and
- B_1 and B_2 have the same cardinality.
Show that #(A_1 u B_1) = #(A_2 u B_2).

We have #A_1

#A 2, #B. 1 = #8 2, A1 nB1l=9, and A2 n B2 = o.

Since #A_1

#A_2, there is a bijection f : A
Since #B_1 B

#B_2, there is a bijection g :

We want to show #(A_1 u B_1) = #(A_2 u
so we want to find a bijection h : A_1l

uB.1l-A2uU
), if x € A_1
), if x € B_2

Define h : A_1 B_2 piecewise,
(

by h(x) = { f
We need to show that h is a bijection.
(1-to-1)

(w.t.s. V x_1, x_2, € Dom(h), h(x_1) = h(x_2) = x_1 = x_2)
Let x_1, x 2 € A1 u B_1.

Assume h(x_1) = h(x_2).
Write y = h(x_1) = h(x_2).
y € A_2uUB_2, s € A2 or y € B_2.

oy
(case 1) If y € A_2,
then by the definition of h, y = f(x_1) = f(x_2).
Then, since f is 1-to-1, we have x_1 = x_2.
(case 2) If y € B_2,
then by the definition of h, y = g(x_1) = g(x_2).
Then, since g is 1-to-1, we have x_1 = x_2.
In either case x_1 = x_2, so h is 1-to-1.

(onto)

(w.t.s. ¥V y € Codom(h), 3 x € Dom(h), y = h(x))

Let y € A2 uUB_2, soy € A2 ory € B_2.

(case 1) Suppose y € A_2.
Since f is onto, there is an x € A_1 such that y = f(x).
Then, by the definition of h, y = h(x) as well.

(case 2) Suppose y € B_2.



Since g is onto, there is an x € B_1 such that y = g(x).
Then, by the definition of h, y = h(x) as well.
In either case, we are able to find an x € A_1 u B_1 with y = h(x).
So h is onto.

) is a bijection.

Thus, h : (A_1 u B_1) - (A_ 2
B_2).

2 U B_
Therefore #(A_1 u B_1) = #(A_2 u
### 5) Suppose A is infinite. Show there is a proper subset B of A
s.t.
#B = #A.

Let A be infinite.

By theorem 10.41(1), A has a countably infinite subset, call it A_1.
Since A_1 is countably infinite, there is a bijection f : A_1 - N-*,
Let A_L2 = {x € A_1 | f(x) is even}.

Since the even naturals are countably infinite (the function 2n is
a bijection from N* to the even naturals), we know that A_2 is also
countably infinite, so #A_1 = #A_2.

Let B = A\ A_1,
so ALl nB=woand A_1 u B = A.

Since A_2 is a proper subset of A_1,
we have A_.2 n B = and A_2 U B is a proper subset of A.

Use 10.47(4), with B = B_1 = B_2, we get #(A_1 u B) = #(A_2 v B),
and A_1 u B = A, so this says #(A) = #(A_2 u B), as desired.

## Exercise 10.54
Show that P(N+*) is uncountable.

Assume that P(N*) is countable,

so there is a bijection f : N* - P(N*).

Let A={i €N | i¢ f(i)}, so A c N+,

f is onto, so there must be a k € N+ s.t. f(k) = A.

Now, either k € A or k ¢ A.

If k € A, then k € f(k), but A = f(k), so this is impossible.

If k € A, then k € f(k), but A = f(k), so this is impossible.

But if both can't be impossible, so we have a contradiction.
Thus, our original assumption, that P(N*) is countable, is wrong.
Therefore, P(N*) is uncountable.



# Chapter 11

Exercises 11.14 (odd), 11.25, 11.38 (2), 11.50 (2), 11.52
## Exercises 11.14 (odd)

### 1) sum_(k=1)~n (6k + 7) = 3n™2 + 10n

(w.t.s. V. n € N+, sum_(k=1)"n (6k + 7) = 3n™2 + 10n)
(base case)

sum_(k=1)~1 (6k + 7) =6 + 7 = 13
3(1)72 + 10(1) = 3 + 10 = 13
so sum_(k=1)"1 (6k + 7) = 3(1)"2 + 10(1)

(induction step)

Assume sum_(k=1)"j (6k + 7) = 3j"2 + 10j
(w.t.s. sum_(k=1)"(j+1) (6k + 7) = 3(j+1)"2 + 10(j+1))
(left side) sum_(k=1)~(j+1) (6k + 7)

sum_(k=1)"j (6k + 7) + 6(j+1) + 7
(3772 + 10j) + 6(j+1) + 7
3772 + 16 + 13
(right side) 3(j+1)72 + 10(j+1)
3(j72 + 2 + 1) + 10 + 10
3772 + 6] + 3 + 10j + 10
3j72 + 165 + 13
so sum_(k=1)~(j+1) (6k + 7) = 3j°2 + 16j + 13
So, but PMI, V n € N*, sum_(k=1)"n (6k + 7) = 3n™2 + 10n

3, 5, 7 are exactly the same.
## Exercises 11.25
### 1) Y n € N*, 3*n = 3n

(base case)

(w.tus. 371 = 3(1))

371 =3

3(1) =3

so 371 = 3(1)
(induction step)

Assume 37k = 3k for some number k

(w.t.s. 3°(k+1) = 3(k+1))

37(k+1) = 3(37k) = 3(3k) = 9k = 3k + 3 = 3(k+1)
So by induction, V n € N*, 3”n = 3n.

### 2) YV X ER*, YVn€EN, (1 +x)"n=1

Let x € R+
(wetes. YV n EN+, (1 + x)™n = 1)
(base case)

(Wetus. (1 + xX)™ = 1)



Since x € R+,

so (1 + x)™1 = 1.
(induction step)
Assume (1 + x)~k = 1 for some K.

(wet.s.

(1 + x)™(k+1)

= (1 +x)(1 + x)™k

1+ x>1,

(1 + x)™(k+1) = 1)

and since (1 + x)"k = 1

we get (1 + x)(1 + x)”k = (1 + x)(1) = (1 + x)

so (1 + x)™(k+1) =1 + x

and since x € R*, we have 1 + x = 1

so (1 + x)™k+1) =1 +x=1

or simply (1 + x)~(k+1) =1

as desired.
By induction, we've shown V n € N*, (1 + x)*n = 1.
Since x was arbitrary in R+,
we've shown V x € R*, Y n € N*, (1 + x)™n = 1.

## Exercise 11.38 (2)

Prove Theorem 11.33 (Every nonempty subset of N has a smallest

element)

Let P(n)
element.

(base case)
P(1))

(w.t.s.

: If ScNand 3 x €S, x <n, then S has a smallest

(w.tus. If ScNand 3 x €S, x =1, then S has a smallest

element)

Let S ¢ N and let x € S with x = 1.

(wet.s.

S has a smallest element)

Either x <1 or x =1
(case 1) Assume x < 1.

(case 2)

(wet.s.

S has a smallest element)

Then x = 0,

and no natural number is smaller than 0,
so S has a smallest element, namely 0.
Assume x = 1.

(wot.s.

S has a smallest element)

Either @ € S or 0 ¢ S.

(case 1)

(case 2)

Assume @ € S.

(w.t.s. S has a smallest element)

Then @ has to be the smallest element,
so S has a smallest element.

Assume 0 ¢ S.

(w.t.s. S has a smallest element)

We have @ € S and 1 € S,

so 1 is the smallest element.

Thus, S has a smallest element.



So S has a smallest element,
since it has a smallest element in either case.
So overall, we know that S must have a smallest element,
since it has a smallest element in either case.
(induction step)
Assume that If S c N* and 3 x € S, x = k, then S has a smallest

element.

(w.t.s. P(k+1))
Let S c N and 3 x € S, x = k+1.
(w.t.s. S has a smallest element)
Either x < k + 1 or x = k + 1.
(case 1) Assume x < k + 1.
(w.t.s. S has a smallest element)
Since x < k + 1, x = k.
Then by the induction hypothesis, S has a smallest

element.

(case 2) Assume x = k + 1.
(w.t.s. S has a smallest element)
Either 3y €S, y<xor-3y €S, y<Xx.
(case 1) Assume 3y €S, y < X.
Since x = k + 1 and y < x, we have y = Kk,
so by the induction hypothesis, S has a smallest

element.

(case 2) Assume - 3y €S, y < X.
Then there's nothing in S that is smaller than

so x is the smallest element of S,
so S has a smallest element.
Thus, S has a smallest element.
By the Principle of Mathematical Induction,
we've shown Vn EN*, (ScN& (3 xXx €S, x=n)) =S has a smallest

element.

We still need to prove the Well-Ordering Priciple.

(w.tus. VX, (XcN&X# @) > X has a smallest element)

Let X ¢ N and assume X # @.

(w.t.s. X has a smallest element)

Since X # @, there is at least one element in X, say k € X.

So, Xc N& (3 x €S, x = k) is true of the set X, since k € X.
Well, since X c N & (3 x € S, x = k) is true,

and because "V n EN*, (ScN& (I3 x €S, x=n)) =S has a smallest

element"

is true (that's what we have shown above)
we have that X has a smallest element.

## Exercise 11.50 (2)

Suppose the sets A_1, A 2, ..., A_n are pairwise-disjoint.
Show A_n is disjoint from A_1 u A2 U ... UA_(n-1) if n > 1.



(we need to use generalize induction, because our base case is P(2))
(base case)
(w.t.s. A_2 is disjoint from A_1)
A_2 is disjoint from A_1
since all the A_i are pairwise-disjoint.
(induction step)
Assume A_k is disjoint from A_1 u ... u A_(k-1) for some k = 2.
(w.t.s. A_(k+1) is disjoint from A_1 u ... U A_k)
Alu...u Ak=(A1u...uUuA_(k-1)) uA_k.
By the induction hypothesis, A_(k+1) is disjoint from A_1 U ... U
A_(k-1),
and A_(k+1) is disjoint from A_k since the A_i are pairwise-
disjoint,
so A_(k+1) is disjoint from their union,

that is, A_(k+1) is disjoint from A_1 u ... U A_k, as desired.
So for all n > 1, A_n is disjoint from A_1 u A2 U ... UuA_(n-1).
## 11.52

The induction step of the proof requires that we have at least three

horses in the set H, because it says we need h_1, h_2, and h to all
be

different horses. This works if n = 3, but it doesn't work for n =
2.

(Think of induction as dominos. We have the base case of P(1),
and the induction step shows that P(3) = P(4) = P(5) = ...,
but we're still missing P(2), so no chain reaction.)



